Effects of insulin secretagogues on phosphoprotein phosphatase 1 and 2A activities in rat islets of Langerhans

1995 ◽  
Vol 23 (4) ◽  
pp. 593S-593S
Author(s):  
LYN I. MURPHY ◽  
PETER M. JONES
1990 ◽  
Vol 5 (3) ◽  
pp. 275-280 ◽  
Author(s):  
D. J. Slee ◽  
P. M. Jones ◽  
S. L. Howell

ABSTRACT Proinsulin conversion to insulin was studied using electrically permeabilized rat islets of Langerhans. Using high-performance liquid chromotography separation of radiolabelled islet proteins, we have demonstrated that conversion was dependent upon temperature, sensitive to pH and regulated by MgATP. Ammonium acetate was used to collapse the granular pH gradient, over a pH range of 3·5–7·4. Conversion was optimum at pH 4·5–5·5 and was reduced, but not abolished, at pH 7·4. Ca2+ (10 μm) and 4β-phorbol 12-myristate 13-acetate (500 nm), which are insulin secretagogues in permeabilized islets, caused no significant stimulation of conversion.


Diabetes ◽  
1986 ◽  
Vol 35 (1) ◽  
pp. 52-57 ◽  
Author(s):  
K. I. Timmers ◽  
N. R. Voyles ◽  
C. King ◽  
M. Wells ◽  
R. Fairtile ◽  
...  

Diabetes ◽  
1984 ◽  
Vol 33 (3) ◽  
pp. 291-296 ◽  
Author(s):  
C. S. Hii ◽  
S. L. Howell

1972 ◽  
Vol 20 (11) ◽  
pp. 873-879 ◽  
Author(s):  
S. L. HOWELL ◽  
MARGARET WHITFIELD

A cytochemical method has been used to investigate the localization of adenyl cyclase activity in A and B cells of isolated rat islets of Langerhans. Adenosine triphosphate was initially utilized as substrate, the pyrophosphate liberated being precipitated by lead ions at its site of production. The specificity of the method was increased by the use of adenylyl-imidodiphosphate as an alternative substrate; this adenosine triphosphate analogue was not hydrolyzed by adenosine triphosphatase but provided an effective substrate for adenyl cyclase. Adenyl cyclase activity, which was found to retain its glucagon and fluoride sensitivity in glutaraldehyde-fixed tissue, was found exclusively and almost uniformly in the plasma membranes of A and B cells. Storage granule membrane, incorporated into the plasma membrane during secretion of the granule content by exocytosis, appeared to be devoid of adenyl cyclase activity.


Diabetes ◽  
1980 ◽  
Vol 29 (1) ◽  
pp. 74-77 ◽  
Author(s):  
G. W. G. Sharp ◽  
D. E. Wiedenkeller ◽  
D. Kaelin ◽  
E. G. Siegel ◽  
C. B. Wollheim

1992 ◽  
Vol 8 (2) ◽  
pp. 103-108 ◽  
Author(s):  
N. S. Berrow ◽  
G. Milligan ◽  
N. G. Morgan

ABSTRACT Inhibition of insulin secretion from rat islets of Langerhans is known to involve at least one pertussis toxin-sensitive guanine-nucleotide binding (G) protein. We have used antisera raised against unique antigenic determinants of different members of the family of pertussis toxin-sensitive G proteins to identify these proteins in rat islets. Antiserum SG1, which recognizes both Gi1 and Gi2, reacted with an islet protein having an approximate Mr of 40 000. Antiserum IlC (Gi1 specific) failed to recognize any islet proteins, suggesting that Gi2 is present in much greater amounts than Gi1. Indeed, Gi1 levels were below the detection limit of a sensitive immunogold/silver-staining method, indicating that it may be absent from the cells of rat islets. Two different antisera were used to identify Go-like G proteins in rat islet homogenates. Both antisera reacted with a protein band which, under appropriate conditions, could be resolved to reveal two separate proteins of Mr 39–40 000. Thus, at least two molecular forms of Go are present in rat islets. Subcellular fractionation indicated that all three G proteins identified in this study (Gi2 and two forms of Go) are localized to islet membranes. No immunoreactivity could be detected in the cytosolic fraction.


Sign in / Sign up

Export Citation Format

Share Document