Abnormal gene expression and assembly of the multimeric complex I in the dum24 deletion mitochondrial mutant of Chlamydomonas reinhardtii

2001 ◽  
Vol 29 (3) ◽  
pp. A52-A52
Author(s):  
C. Remacle ◽  
F. Duby ◽  
P. Cardol ◽  
R. F. Matagne
Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1051-1060
Author(s):  
Claire Remacle ◽  
Denis Baurain ◽  
Pierre Cardol ◽  
René F Matagne

Abstract The mitochondrial rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) comprises more than 30 subunits, the majority of which are encoded by the nucleus. In Chlamydomonas reinhardtii, only five components of complex I are coded for by mitochondrial genes. Three mutants deprived of complex I activity and displaying slow growth in the dark were isolated after mutagenic treatment with acriflavine. A genetical analysis demonstrated that two mutations (dum20 and dum25) affect the mitochondrial genome whereas the third mutation (dn26) is of nuclear origin. Recombinational analyses showed that dum20 and dum25 are closely linked on the genetic map of the mitochondrial genome and could affect the nd1 gene. A sequencing analysis confirmed this conclusion: dum20 is a deletion of one T at codon 243 of nd1; dum25 corresponds to a 6-bp deletion that eliminates two amino acids located in a very conserved hydrophilic segment of the protein.


PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94069 ◽  
Author(s):  
Mohammad Hossein Salehi ◽  
Behnam Kamalidehghan ◽  
Massoud Houshmand ◽  
Goh Yong Meng ◽  
Majid Sadeghizadeh ◽  
...  

Plant Science ◽  
2004 ◽  
Vol 167 (5) ◽  
pp. 1109-1122 ◽  
Author(s):  
Nrupali Patel ◽  
Vinitha Cardoza ◽  
Erin Christensen ◽  
Bhanu Rekapalli ◽  
Mentewab Ayalew ◽  
...  

2020 ◽  
Vol 10 (10) ◽  
pp. 3797-3810
Author(s):  
Manishi Pandey ◽  
Gary D. Stormo ◽  
Susan K. Dutcher

Genome-wide analysis of transcriptome data in Chlamydomonas reinhardtii shows periodic patterns in gene expression levels when cultures are grown under alternating light and dark cycles so that G1 of the cell cycle occurs in the light phase and S/M/G0 occurs during the dark phase. However, alternative splicing, a process that enables a greater protein diversity from a limited set of genes, remains largely unexplored by previous transcriptome based studies in C. reinhardtii. In this study, we used existing longitudinal RNA-seq data obtained during the light-dark cycle to investigate the changes in the alternative splicing pattern and found that 3277 genes (19.75% of 17,746 genes) undergo alternative splicing. These splicing events include Alternative 5′ (Alt 5′), Alternative 3′ (Alt 3′) and Exon skipping (ES) events that are referred as alternative site selection (ASS) events and Intron retention (IR) events. By clustering analysis, we identified a subset of events (26 ASS events and 10 IR events) that show periodic changes in the splicing pattern during the cell cycle. About two-thirds of these 36 genes either introduce a pre-termination codon (PTC) or introduce insertions or deletions into functional domains of the proteins, which implicate splicing in altering gene function. These findings suggest that alternative splicing is also regulated during the Chlamydomonas cell cycle, although not as extensively as changes in gene expression. The longitudinal changes in the alternative splicing pattern during the cell cycle captured by this study provides an important resource to investigate alternative splicing in genes of interest during the cell cycle in Chlamydomonas reinhardtii and other eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document