Lack of a Role for the Renal Nerves in Renal Sodium Reabsorption in Conscious Dogs

1978 ◽  
Vol 54 (5) ◽  
pp. 567-572 ◽  
Author(s):  
M. D. Lifschitz

1. Studies in anaesthetized animals suggest that the renal nerves have a role in the regulation of sodium excretion. Urinary sodium excretion decreases when the renal nerves are stimulated and increases after renal denervation or ganglionic blockade. In order to define the role of the renal nerves in the regulation of urinary sodium excretion in awake animals, dogs were prepared with one kidney denervated and the other intact and the bladder split so that urine could be collected from each kidney. Denervation was confirmed by kidney noradrenaline analysis (1·72 ± 0·29 vs 0·18 ± 0·12 nmol/g). 2. These dogs were studied awake with one of two protocols on each of two separate days. In protocol VH, volume expansion (5% body weight) was followed by haemorrhage of 2% body weight. Fractional sodium excretion fell from 4·7 ± 0·5 to 1·1 ± 0·2% on the denervated side and from 5·6 ± 0·6 to 1·4 ± 0·3% on the intact side. Inulin and p-aminohippurate clearance fell similarly on both sides. 3. In protocol HV, haemorrhage of 2% body weight was followed by blood replacement and volume expansion of 5% body weight. In this second protocol fractional sodium excretion during haemorrhage was 0·23 ± 0·07 and 0·24 ± 0·09% for denervated and intact kidneys respectively and increased to 2·04 ± 0·32 and 2·78 ± 0·60 after volume expansion. 4. In both protocols the denervated kidney was able to reabsorb sodium as well as the innervated kidney during haemorrhage and was able to increase fractional sodium excretion as well as the denervated kidney during volume expansion. These results suggest that the renal nerves do not have a significant role in the regulation of sodium excretion in conscious animals.

1986 ◽  
Vol 251 (2) ◽  
pp. R310-R313 ◽  
Author(s):  
T. R. Schwab ◽  
B. S. Edwards ◽  
D. M. Heublein ◽  
J. C. Burnett

Studies were performed to investigate the role of circulating atrial natriuretic peptide (ANP) in acute volume-expansion natriuresis. Sham-operated (SHAM, n = 6) and right atrial appendectomized (ATRX, n = 12) anesthetized rats underwent acute volume expansion with isoncotic albumin. After equilibration and control periods, volume expansion increased urine flow rate, urinary sodium excretion, fractional excretion of sodium, and circulating ANP. Absolute increases in urine flow rate (delta 46 +/- 4 SHAM; delta 25 +/- 5 microliter/min ATRX), urinary sodium excretion (delta 9.48 +/- 1.01 SHAM; delta 4.77 +/- 1.03 mueq/min ATRX), fractional excretion of sodium (delta 3.16 +/- 0.53 SHAM; delta 1.65 +/- 0.32% ATRX), and ANP (delta 303.3 +/- 35.9 SHAM; delta 156.6 +/- 26.0 pg/ml ATRX) were significantly reduced by right atrial appendectomy. No significant differences in mean arterial pressure, central venous pressure, or glomerular filtration rate during volume expansion were observed between groups. These studies support the hypothesis that right atrial appendectomy in the rat attenuates acute volume expansion-induced increases in circulating ANP and urinary sodium excretion and that the natriuresis of acute volume expansion is mediated in part by an increase in circulating ANP.


1988 ◽  
Vol 254 (4) ◽  
pp. F507-F511 ◽  
Author(s):  
D. Pawlowska ◽  
J. A. Haas ◽  
J. P. Granger ◽  
J. C. Romero ◽  
F. G. Knox

Previous studies have shown that renal interstitial volume expansion (RIVE) increases renal interstitial hydrostatic pressure and urinary sodium excretion. In the present study we investigated whether blockade of prostaglandin synthesis inhibits the increase in fractional sodium excretion induced by RIVE. Expansion of the renal interstitial volume was achieved by injecting 50 microliters of 2.5% albumin solution into a polyethylene matrix chronically implanted in the left kidney. Fractional sodium excretion (FENa), renal interstitial hydrostatic pressure (PI), and urinary prostaglandin excretion (UPGE2) were measured before and after RIVE in eight control, seven meclofenamate-treated, and eight indomethacin-treated rats. RIVE in the control animals resulted in significant increases in PI (delta + 4.2 +/- 0.8 mmHg), in FENa (delta + 1.02 +/- 0.27%), and in UPGE2 (% delta + 150 +/- 38%) without significant changes in glomerular filtration rate. Inhibition of prostaglandin synthesis with meclofenamate or indomethacin attenuated the natriuretic response and blocked the increase in UPGE2 associated with RIVE. In summary, direct increases in renal interstitial hydrostatic pressure increase UPGE2 and urinary sodium excretion. This natriuretic response is markedly diminished by inhibition of prostaglandin synthesis. These studies suggest that prostaglandin synthesis may have an important role in mediating the natriuretic effect of increased renal interstitial hydrostatic pressure during renal interstitial volume expansion.


1987 ◽  
Vol 65 (12) ◽  
pp. 2428-2432 ◽  
Author(s):  
J. Michael Wyss ◽  
Wanida Sripairojthikoon ◽  
Suzanne Oparil

In previous experiments we have demonstrated that the renal nerves play a significant role in all genetic and (or) induced models of hypertension that we have studied. The current experiments extended this research by investigating the contribution of the renal nerves to hypertension in the Dahl NaCl-sensitive rat. This was investigated by assessing the effect of bilateral phenol renal denervation carried out prior to initiation of a high NaCl (8% NaCl) diet. In two separate studies, renal denervation did not affect systolic blood pressure in either Dahl NaCl-sensitive rats or their normotensive counterparts, Dahl NaCl-resistant rats. Further, denervation did not increase absolute urinary sodium excretion, percent urinary sodium excretion, urinary volume output, or food or water intake; nor did it differentially alter creatinine clearance or body weight. Denervation was verified at the termination of each study by a greater than 80% depletion of renal noradrenaline stores. These results indicate that the renal nerves do not provide a major contribution to hypertension in the Dahl NaCl-sensitive rat.


1985 ◽  
Vol 249 (2) ◽  
pp. F299-F307 ◽  
Author(s):  
M. E. Olsen ◽  
J. E. Hall ◽  
J. P. Montani ◽  
A. C. Guyton ◽  
H. G. Langford ◽  
...  

The aim of this study was to determine the role of changes in renal arterial pressure (RAP), renal hemodynamics, and tubular reabsorption in mediating the natriuretic and antinatriuretic actions of angiotensin II (ANG II). In seven anesthetized dogs, endogenous ANG II formation was blocked with captopril, and ANG II was infused intravenously at rates of 5-1,215 ng X kg-1 X min-1 while RAP was either servo-controlled at the preinfusion level or permitted to increase. When RAP was servo-controlled, ANG II infusion at all rates from 5-1,215 ng X kg-1 X min-1 decreased urinary sodium excretion (UNaV) and fractional sodium excretion (FENa) while increasing fractional reabsorption of lithium (FRLi) (an index of proximal tubular fractional sodium reabsorption) and causing no change in calculated distal tubule fractional sodium reabsorption (FRDNa). When RAP was permitted to increase, ANG II infusion rates up to 45 ng X kg-1. min-1 also decreased UNaV and FENa while increasing FRLi and causing no change in FRDNa. However, at 135 ng X kg-1 X min-1 and above, UNaV and FENa increased while FRLi and FRDNa decreased when RAP was allowed to rise, even though renal blood flow and filtration fraction were not substantially different from the values observed when RAP was servo-controlled. Filtered sodium load was slightly higher when RAP was permitted to increase during ANG II infusion compared with when RAP was servo-controlled, although the differences were not statistically significant. Thus, even very large doses of ANG II cause antinatriuresis when RAP is prevented from increasing.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 280 (5) ◽  
pp. R1450-R1456 ◽  
Author(s):  
Tomoyuki Yamasaki ◽  
Isao Tamai ◽  
Yasuo Matsumura

To investigate the possible involvement of histamine H3 receptors in renal noradrenergic neurotransmission, effects of (R)alpha-methylhistamine (R-HA), a selective H3-receptor agonist, and thioperamide (Thiop), a selective H3-receptor antagonist, on renal nerve stimulation (RNS)-induced changes in renal function and norepinephrine (NE) overflow in anesthetized dogs were examined. RNS (0.5–2.0 Hz) produced significant decreases in urine flow and urinary sodium excretion and increases in NE overflow rate (NEOR), without affecting renal hemodynamics. When R-HA (1 μg · kg−1 · min−1) was infused intravenously, mean arterial pressure and heart rate were significantly decreased, and there was a tendency to reduce basal values of urine flow and urinary sodium excretion. During R-HA infusion, RNS-induced antidiuretic action and increases in NEOR were markedly attenuated. Thiop infusion (5 μg · kg−1 · min−1) did not affect basal hemodynamic and excretory parameters. Thiop infusion caused RNS-induced antidiuretic action and increases in NEOR similar to the basal condition. When R-HA was administered concomitantly with Thiop infusion, R-HA failed to attenuate the RNS-induced antidiuretic action and increases in NEOR. However, in the presence of pyrilamine (a selective H1-receptor antagonist) or cimetidine (a selective H2-receptor antagonist) infusion, R-HA attenuated the RNS-induced actions, similarly to the case without these antagonists. Thus functional histamine H3 receptors, possibly located on renal noradrenergic nerve endings, may play the role of inhibitory modulators of renal noradrenergic neurotransmission.


1978 ◽  
Vol 235 (3) ◽  
pp. F163-F173 ◽  
Author(s):  
H. E. de Wardener

The kidneys of a normal man filter approximately 24,000 meq sodium/day, reabsorb about 23,900, and yet can make a 1--2 meq change in 24-h urinary sodium excretion. The control of urinary sodium excretion, therefore, depends, first, on ensuring that the bulk of the sodium is reabsorbed, a function which is carried out in the proximal tubule and ascending loop of Henle. Second, it depends on adjusting the reabsorption of the small quantity of sodium which is delivered into the collecting duct so that the amount excreted in the urine is that required to maintain sodium balance. The bulk reabsorptive mechanisms can be considered as buffers to prevent large fluctuations in the amount of sodium delivered to the collecting duct, thus facilitating the fine adjustments of reabsorption which are made at this site. In conditions other than extreme salt loading or deprivation, changes in sodium reabsorption in the proximal tubule and loop of Henle probably have little, if any, effect on urinary sodium excretion. Sodium reabsorption in the proximal tubule and the collecting duct appears to be influenced by unidentified circulating substances.


1993 ◽  
Vol 264 (4) ◽  
pp. H1187-H1193 ◽  
Author(s):  
D. Villarreal ◽  
R. H. Freeman ◽  
R. A. Johnson

The acute and chronic interactions of the renal nerves, atrial natriuretic factor (ANF), and mineralocorticoids for the regulation of sodium balance were examined in dogs with an arteriovenous (AV) fistula and the syndrome of high-output heart failure (HOHF) (n = 6). After the AV fistula and bilateral renal denervation, the animals avidly retained sodium for 5-7 days and then regained sodium balance for the subsequent 3 wk. This compensation was associated with the sustained elevations of plasma ANF and the normalization of plasma renin. Subsequent administration of deoxycorticosterone acetate (DOCA) for 10 days produced consistent sodium retention despite additional elevations in plasma ANF. All of these responses were similar to previous studies in AV fistula dogs with intact renal nerves. In a separate part of the study, the renal actions of acute synthetic ANF infusions were examined in these renal-denervated AV fistula dogs before and after DOCA. In the pre-DOCA experiments, ANF infusions at 15, 30, and 100 ng.kg-1.min-1 produced dose-related increases in urinary sodium excretion and significant elevations in creatinine clearance. In the presence of DOCA, urinary sodium excretion was markedly attenuated during identical ANF infusions. The composite results suggest that mineralocorticoids have an important modulatory role for the regulation of sodium balance in experimental HOHF. However, compared with earlier studies in compensated AV fistula dogs with intact renal nerves, the present studies demonstrate that blockade of efferent renal sympathetic nerve activity can restore the natriuretic expression of acute elevations in circulating ANF.


1984 ◽  
Vol 247 (3) ◽  
pp. F475-F479 ◽  
Author(s):  
J. A. Haas ◽  
T. G. Hammond ◽  
J. P. Granger ◽  
E. H. Blaine ◽  
F. G. Knox

Intrarenal infusion of the natural prostaglandin PGE2 increases renal blood flow, renal interstitial hydrostatic pressure, and urinary sodium excretion. A newly synthesized prostaglandin analogue, 4-3-[3-[2-(1-hydroxycyclohexyl)- ethyl]-4-oxo-2-thiazolidinyl]propyl benzoic acid, increases renal blood flow without increasing sodium excretion. To investigate the role of renal interstitial hydrostatic pressure in this dissociation, comparisons were made between PGE2 and the prostaglandin analogue. Intrarenal infusion of PGE2 increased renal blood flow, renal interstitial hydrostatic pressure, and urinary sodium excretion. Following a similar increase in renal blood flow with intrarenal infusion of prostaglandin analogue, renal interstitial hydrostatic pressure and urinary sodium excretion were not changed. To determine whether increases in urinary sodium excretion due to PGE2 infusion are causally related to the increase in renal interstitial hydrostatic pressure rather than to the increase in renal blood flow, responses to PGE2 were obtained in the absence of increases in interstitial pressure. When renal interstitial hydrostatic pressure was held constant, urinary sodium excretion did not change although there was a marked increase in renal blood flow. We conclude that increased renal interstitial hydrostatic pressure is necessary to produce an increase in urinary sodium excretion with prostaglandin-mediated renal vasodilation.


Sign in / Sign up

Export Citation Format

Share Document