Arthrogenic Quadriceps Inhibition and Rehabilitation of Patients with Extensive Traumatic Knee Injuries

1994 ◽  
Vol 86 (3) ◽  
pp. 305-310 ◽  
Author(s):  
M. V. Hurley ◽  
D. W. Jones ◽  
D. J. Newham

1. The relationship between joint damage, quadriceps weakness and arthrogenic muscle inhibition was investigated in eight patients who had sustained extensive traumatic knee injury. Isometric and isokinetic quadriceps and hamstring voluntary strength, and quadriceps arthrogenic muscle inhibition during isometric contractions, were measured before and after 4 weeks (approximately 100 h) of intensive rehabilitation. 2. Compared with the uninjured leg, before rehabilitation the injured leg had larger amounts of quadriceps arthrogenic muscle inhibition (P < 0.025), quadriceps (P < 0.0001) and hamstring (P < 0.0001) weakness and severe functional joint instability. There was a negative correlation between the amount of arthrogenic muscle inhibition and quadriceps voluntary contraction force (P < 0.025). 3. After rehabilitation in the injured leg there were small hamstring strength increases (P < 0.05–0.025), but no overall significant quadricep strength increase. Arthrogenic muscle inhibition was statistically unchanged. Severe functional joint instability was still reported by all patients. 4. Previous studies have shown that minimal joint damage evokes relatively less arthrogenic muscle inhibition that does not impede rehabilitation. These data indicate that greater joint damage is associated with greater arthrogenic muscle inhibition, quadriceps weakness and joint instability. Furthermore, intensive rehabilitation had little affect on either quadriceps arthrogenic muscle inhibition or atrophy.

Author(s):  
Amandine Bouguetoch ◽  
Alain Martin ◽  
Sidney Grosprêtre

Abstract Introduction Training stimuli that partially activate the neuromuscular system, such as motor imagery (MI) or neuromuscular electrical stimulation (NMES), have been previously shown as efficient tools to induce strength gains. Here the efficacy of MI, NMES or NMES + MI trainings has been compared. Methods Thirty-seven participants were enrolled in a training program of ten sessions in 2 weeks targeting plantar flexor muscles, distributed in four groups: MI, NMES, NMES + MI and control. Each group underwent forty contractions in each session, NMES + MI group doing 20 contractions of each modality. Before and after, the neuromuscular function was tested through the recording of maximal voluntary contraction (MVC), but also electrophysiological and mechanical responses associated with electrical nerve stimulation. Muscle architecture was assessed by ultrasonography. Results MVC increased by 11.3 ± 3.5% in NMES group, by 13.8 ± 5.6% in MI, while unchanged for NMES + MI and control. During MVC, a significant increase in V-wave without associated changes in superimposed H-reflex has been observed for NMES and MI, suggesting that neural adaptations occurred at supraspinal level. Rest spinal excitability was increased in the MI group while decreased in the NMES group. No change in muscle architecture (pennation angle, fascicle length) has been found in any group but muscular peak twitch and soleus maximal M-wave increased in the NMES group only. Conclusion Finally, MI and NMES seem to be efficient stimuli to improve strength, although both exhibited different and specific neural plasticity. On its side, NMES + MI combination did not provide the expected gains, suggesting that their effects are not simply cumulative, or even are competitive.


Healthcare ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 646
Author(s):  
Han-Sol Kang ◽  
Hyung-Wook Kwon ◽  
Di-gud Kim ◽  
Kwang-Rak Park ◽  
Suk-Chan Hahm ◽  
...  

This study aimed to investigate the effects of suboccipital muscle inhibition technique (SMIT) on active range of motion (AROM) of the ankle joint, lunge angle (LA), and balance in healthy adults, according to the duration of its application. A total of 80 participants were randomly allocated to the 4-min suboccipital muscle inhibition (SMI) group (SMI_4M, n = 20), 8-min SMI group (n = 20), 4-min sham-SMI (SSMI) group (n = 20), and 8-min SSMI group (n = 20). Accordingly, the SMIT and sham SMIT were applied for 4 min or 8 min in the respective groups. AROM of dorsiflexion and LA were assessed, and a single leg balance test (SLBT) was performed before and after the intervention. AROM (4 min, p < 0.001; 8 min, p < 0.001), LA (4 min, p < 0.001; 8 min, p < 0.001), and SLBT (4 min, p < 0.001; 8 min, p < 0.001) significantly improved after SMI application. Compared with the SSMI group, the SMI group showed a significant increase in AROM (p < 0.001), LA (p < 0.001), and SLBT (p < 0.001). Except for SLBT (p = 0.016), there were no significant interactions between intervention and application duration. The results suggest that the SMIT, at durations of both 4 and 8 min, could be effective tools for improving AROM, LA, and balance.


1997 ◽  
Vol 22 (6) ◽  
pp. 573-584 ◽  
Author(s):  
Anna Jaskólska ◽  
Artur Jaskólski

Twenty-two young male subjects were tested to estimate the behavior of the early and late phases of relaxation from a 3-s maximal voluntary contraction (MVC) under the influence of fatigue. Less demanding and more demanding protocols of intermittent hand grip exercise were used to fatigue muscle. Before and after fatigue, the early and late relaxation time, maximal relaxation rate, and half-relaxation time were measured. The results showed that during voluntary movement (a) the early phase of relaxation was independent of the mode of intermittent exercise and did not change significantly after fatigue; (b) the late relaxation time and absolute maximal relaxation rate were slower after both protocols, with the changes more pronounced following the more demanding protocol; and (c) the half-relaxation time and relative maximal relaxation rate were changed only in the more demanding protocol. It is concluded that unlike the relaxation following electrical stimulation of isolated muscle, the early phase of relaxation from voluntary contraction appears to be the most resistant to the type of intermittent fatiguing exercise used in the present study, whereas the late relaxation time was the most sensitive to this type of fatigue. Key words: hand grip exercise, late relaxation time, early relaxation time, half-relaxation time


2005 ◽  
Vol 26 (12) ◽  
pp. 1055-1061 ◽  
Author(s):  
Eric D. McVey ◽  
Riann M. Palmieri ◽  
Carrie L. Docherty ◽  
Steven M. Zinder ◽  
Christopher D. Ingersoll

Background: Functional ankle instability or a subjective report of “giving way” at the ankle may be present in up to 40% of patients after a lateral ankle sprain. Damage to mechanoreceptors within the lateral ankle ligaments after injury is hypothesized to interrupt neurologic feedback mechanisms resulting in functional ankle instability. The altered input can lead to weakness of muscles surrounding a joint, or arthrogenic muscle inhibition. Arthrogenic muscle inhibition may be the underlying cause of functional ankle instability. Establishing the involvement of arthrogenic muscle inhibition in functional ankle instability is critical to understanding the underlying mechanisms or chronic ankle instability. The purpose of this investigation was to determine if arthrogenic muscle inhibition is present in the ankle joint musculature of patients exhibiting unilateral functional ankle instability. Methods: Twenty-nine subjects, 15 with unilateral functional ankle instability and 14 healthy control subjects, consented to participate. Bilateral soleus, peroneal, and tibialis anterior H-reflex and M-wave recruitment curves were obtained. Maximal H-reflex and maximal M-wave values were identified and the H:M ratios were calculated for data analysis. Separate 1 × 2 ANOVA were done for both the functional ankle instability and control groups to evaluate differences between limbs on the H:M ratios. Bonferroni multiple comparison procedures were used for post hoc comparisons ( p ≤ 0.05). Results: The soleus and peroneal H:M ratios for subjects with functional ankle instability were smaller in the injured limb when compared with the uninjured limb (p < 0.05). No limb difference was detected for the tibialis anterior H:M ratio in the functional ankle instability group ( p = 0.904). No side-to-side differences were detected for the H:M ratios in patients reporting no history of ankle injury ( p > 0.05). Conclusions: Depressed H:M ratios in the injured limb suggest that arthrogenic muscle inhibition is present in the ankle musculature of patients exhibiting functional ankle instability. Establishing and using therapeutic techniques to reverse arthrogenic muscle inhibition may reduce the incidence of functional ankle instability.


2018 ◽  
Vol 2018 ◽  
pp. 1-3
Author(s):  
Thiago Alvim do Amaral ◽  
David Sadigursky

A 25-year-old man initially presented with right knee extension deficit after an acute trauma, caused by a condition known as arthrogenic muscle inhibition. This should not be confused with a mechanical block caused by intra-articular pathology. The loss of knee extension, even if minimal, is disabling and leads to worse results after knee surgical treatment. Therefore, it is necessary to recognize and diagnose arthrogenic muscle inhibition to ensure the best treatment for patients with this condition. In this case report, the patient was managed with a rehabilitation technique resulting in an effective functional gain of the quadriceps and full restoration of knee extension.


2019 ◽  
Vol 26 (5) ◽  
pp. 1-10
Author(s):  
Songül Baglan-Yentur ◽  
Oğuzhan Mete ◽  
Zeynep Tuna ◽  
Abdurrahman Tufan ◽  
Deran Oskay

Introduction/Aims The first complaint in ankylosing spondylitis is usually sacroiliac joint pain and morning stiffness. Aside from inflammation, sacroiliac joint pain is related to joint damage and mechanical stress. Many different methods are applied in the treatment of sacroiliac joint pain. This study aimed to investigate the effects of sacroiliac joint mobilisation on pain, function and mobility in patients with ankylosing spondylitis. Methods Two patients presented with sacroiliac joint pain: a 46-year-old male and a 34-year-old female. Both patients received eight sessions of mobilisation with movement, according to the Mulligan concept (sacroiliac joint mobilisation and mechanical correction). Sessions were held at 4-day intervals over a 28-day period. The patients were assessed for sacroiliac joint mobilisation immediately before and after the first session and their pain, function and mobility were assessed at the second and eighth sessions. Findings A decrease in pain and increases in functional performance and mobility were noted in both cases at the end of eight sessions. Conclusions Sacroiliac joint mobilisation might be effective in improving pain, function and mobility in patients with ankylosing spondylitis. Further studies should be conducted with an increased number of participants to confirm these findings.


2006 ◽  
Vol 101 (3) ◽  
pp. 715-720 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara

Alternate muscle activity between synergist muscles has been demonstrated during low-level sustained contractions [≤5% of maximal voluntary contraction (MVC) force]. To determine the functional significance of the alternate muscle activity, the association between the frequency of alternate muscle activity during a low-level sustained knee extension and the reduction in knee extension MVC force was studied. Forty-one healthy subjects performed a sustained knee extension at 2.5% MVC force for 1 h. Before and after the sustained knee extension, MVC force was measured. The surface electromyogram was recorded from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles. The frequency of alternate muscle activity for RF-VL, RF-VM, and VL-VM pairs was determined during the sustained contraction. The frequency of alternate muscle activity ranged from 4 to 11 times/h for RF-VL (7.0 ± 2.0 times/h) and RF-VM (7.0 ± 1.9 times/h) pairs, but it was only 0 to 2 times/h for the VL-VM pair (0.5 ± 0.7 times/h). MVC force after the sustained contraction decreased by 14% ( P < 0.01) from 573.6 ± 145.2 N to 483.3 ± 130.5 N. The amount of reduction in MVC force was negatively correlated with the frequency of alternate muscle activity for the RF-VL and RF-VM pairs ( P < 0.001 and r = 0.65 for both) but not for the VL-VM pair. The results demonstrate that subjects with more frequent alternate muscle activity experience less muscle fatigue. We conclude that the alternate muscle activity between synergist muscles attenuates muscle fatigue.


2010 ◽  
Vol 2 (4) ◽  
pp. 160-162 ◽  
Author(s):  
Joseph M. Hart ◽  
David R. Diduch ◽  
Andy G. Baker

2014 ◽  
Vol 17 (04) ◽  
pp. 1450015
Author(s):  
Yoichi Ohta ◽  
Kengo Yotani

Purpose: The present study aimed to clarify inter-individual correlation between the magnitudes of force summation and the post-activation potentiation (PAP), in human ankle plantar- and dorsi-flexor muscles. Methods: We analyzed 10 male participants plantar-flexor muscles and the 12 male participants dorsi-flexor muscles using a database from a previous study. Before and after maximum voluntary contraction, we measured the amount of isometric torque evoked by a single, double- and triple-pulse train stimulus. Results: The magnitude of PAP was significantly positively correlated with the magnitude of force summation in both the plantar- and dorsi-flexor muscles. Conclusions: The present study confirmed the correlation between the magnitudes of force summation and PAP in human ankle plantar- and dorsi-flexor muscles. This suggests that muscle characteristics affecting the force summation capacity depend on the PAP, to some degree. These results suggest that the combination of both parameters might enhance the usefulness of evaluating changes in muscle function using intrinsic contractile properties.


Sign in / Sign up

Export Citation Format

Share Document