Everolimus is a potent inhibitor of activated hepatic stellate cell functions in vitro and in vivo, while demonstrating anti-angiogenic activities

2014 ◽  
Vol 126 (11) ◽  
pp. 775-791 ◽  
Author(s):  
Anne-Christine Piguet ◽  
Syamantak Majumder ◽  
Uma Maheshwari ◽  
Reji Manjunathan ◽  
Uttara Saran ◽  
...  

The present study demonstrates the therapeutic potential of everolimus for the treatment of hepatocellular carcinomas in the fibrotic liver by inhibiting hepatic stellate cell activation and angiogenesis.

2021 ◽  
Author(s):  
Ning Wang ◽  
Xiajing Li ◽  
Zhiyong Zhong ◽  
Yaqi Qiu ◽  
Shoupei Liu ◽  
...  

Abstract BackgroundExosomes secreted from stem cells exerted salutary effects on the fibrotic liver. Herein, the roles of exosomes derived from human embryonic stem cell (hESC) in anti-fibrosis were extensively investigated. Compared with two-dimensional (2D) culture, the clinical and biological relevance of three-dimensional (3D) cell spheroids were greater because of their higher regeneration potential since they behave more like cells in vivo. In our study, exosomes derived from 3D human embryonic stem cells (hESC) spheroids and the monolayer (2D) hESCs were collected and compared the therapeutic potential for fibrotic liver in vitro and in vivo. ResultsIn vitro, PKH26 labled-hESC-Exosomes were shown to be internalized and integrated into TGFβ-activated-LX2 cells, and reduced the expression of profibrogenic markers, thereby regulating cellular phenotypes. TPEF imaging indicated that PKH26-labled-3D-hESC-Exsomes possessed an enhanced capacity to accumulate in the livers and exhibited more dramatic therapeutic potential in the injured livers of fibrosis mouse model. 3D-hESC-Exosomes decreased profibrogenic markers and liver injury markers, and improved the level of liver functioning proteins, eventually restoring liver function of fibrosis mice. miRNA array revealed a significant enrichment of miR-6766-3p in 3D-hESC-Exosomes, moreover, bioinformatics and dual luciferase reporter assay identified and confirmed the TGFβRII gene as the target of miR-6766-3p. Furthermore, the delivery of miR-6766-3p into activated-LX2 cells decreased cell proliferation, chemotaxis and profibrotic effects, and further investigation demonstrated that the expression of target gene TGFβRII and its downstream SMADs proteins, especially phosphorylated protein p-SMAD2/3 was also notably down-regulated by miR-6766-3p. These findings unveiled that miR-6766-3p in 3D-hESC-Exosomes inactivated SMADs signaling by inhibiting TGFβRII expression, consequently attenuating stellate cell activation and suppressing liver fibrosis. ConclusionsOur results showed that miR-6766-3p in the 3D-hESC-Exosomes inactivates smads signaling by restraining TGFβRII expression, attenuated LX2 cell activation and suppressed liver fibrosis, suggesting that 3D-hESC-Exosome enriched-miR6766-3p is a novel anti-fibrotic therapeutics for treating chronic liver disease. These results also proposed a significant strategy that 3D-Exo could be used as natural nanoparticles to rescue liver injury via delivering antifibrotic miR-6766-3p.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-321454
Author(s):  
Juan Bayo ◽  
Esteban J Fiore ◽  
Luciana María Dominguez ◽  
María Jose Cantero ◽  
Matias S Ciarlantini ◽  
...  

ObjectiveThe RHO family of GTPases, particularly RAC1, has been linked with hepatocarcinogenesis, suggesting that their inhibition might be a rational therapeutic approach. We aimed to identify and target deregulated RHO family members in human hepatocellular carcinoma (HCC).DesignWe studied expression deregulation, clinical prognosis and transcription programmes relevant to HCC using public datasets. The therapeutic potential of RAC1 inhibitors in HCC was study in vitro and in vivo. RNA-Seq analysis and their correlation with the three different HCC datasets were used to characterise the underlying mechanism on RAC1 inhibition. The therapeutic effect of RAC1 inhibition on liver fibrosis was evaluated.ResultsAmong the RHO family of GTPases we observed that RAC1 is upregulated, correlates with poor patient survival, and is strongly linked with a prooncogenic transcriptional programme. From a panel of novel RAC1 inhibitors studied, 1D-142 was able to induce apoptosis and cell cycle arrest in HCC cells, displaying a stronger effect in highly proliferative cells. Partial rescue of the RAC1-related oncogenic transcriptional programme was obtained on RAC1 inhibition by 1D-142 in HCC. Most importantly, the RAC1 inhibitor 1D-142 strongly reduce tumour growth and intrahepatic metastasis in HCC mice models. Additionally, 1D-142 decreases hepatic stellate cell activation and exerts an anti-fibrotic effect in vivo.ConclusionsThe bioinformatics analysis of the HCC datasets, allows identifying RAC1 as a new therapeutic target for HCC. The targeted inhibition of RAC1 by 1D-142 resulted in a potent antitumoural effect in highly proliferative HCC established in fibrotic livers.


Cytokine ◽  
2020 ◽  
Vol 136 ◽  
pp. 155288
Author(s):  
Feng Peng ◽  
Yi Tian ◽  
Jing Ma ◽  
Zhenyu Xu ◽  
Sujuan Wang ◽  
...  

2002 ◽  
Vol 54 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Hee-Chul Kang ◽  
Ji-Xing Nan ◽  
Pil-Hoon Park ◽  
Ji-Young Kim ◽  
Sung Hee Lee ◽  
...  

2018 ◽  
Vol 51 (6) ◽  
pp. 2814-2828 ◽  
Author(s):  
Zhiqin Li ◽  
Jia Wang ◽  
Qinglei Zeng ◽  
Chunling Hu ◽  
Jiajia Zhang ◽  
...  

Background/Aims: HOTTIP is a critical modulator in human diseases including liver cancer, but its role and molecular biological mechanisms in liver fibrosis are still unclear. Methods: The expression profile of HOTTIP during the progression of liver fibrosis was detected in human liver samples and in CCl4-treated mice using qRT-PCR. The expressing sh-HOTTIP adenoviral vector was used to reduce HOTTIP levels in vivo. Dual-Luciferase Reporter Assay was performed to validate the interaction between miR-148a and HOTTIP, TGFBR1, or TGFBR2. Results: HOTTIP expressions in fibrotic liver samples and cirrhotic liver samples were significantly upregulated compared with healthy liver controls, and cirrhotic samples exhibited the highest levels of HOTTIP. Moreover, HOTTIP expressions were substantially induced in the liver tissues and hepatic stellate cells (HSC) of CCl4-treated mice. Ad-shHOTTIP delivery could alleviate CCl4- induced liver fibrosis in mice. Down-regulation of HOTTIP inhibited the viability and activation of HSCs in vitro, and HOTTIP negatively regulated miR-148a expression in HSCs. miR-148a had a negative effect on HSC activation by targeting TGFBR1 and TGFBR2. Conclusion: HOTTIP is involved in the progression of liver fibrosis by promoting HSC activation. The high level of HOTTIP downregulates miR-148a, thus to increase the level of TGFBR1 and TGFBR2 and contribute to liver fibrosis.


2002 ◽  
Vol 122 (7) ◽  
pp. 1924-1940 ◽  
Author(s):  
Andrea Galli ◽  
David W. Crabb ◽  
Elisabetta Ceni ◽  
Renata Salzano ◽  
Tommaso Mello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document