Detection of Hearing Loss Using 2f2-f1 and 2f1-f2 Distortion-Product Otoacoustic Emissions

2005 ◽  
Vol 48 (5) ◽  
pp. 1165-1186 ◽  
Author(s):  
Tracy S. Fitzgerald ◽  
Beth A. Prieve

Although many distortion-product otoacoustic emissions (DPOAEs) may be measured in the ear canal in response to 2 pure tone stimuli, the majority of clinical studies have focused exclusively on the DPOAE at the frequency 2f1-f2. This study investigated another DPOAE, 2f2-f1, in an attempt to determine the following: (a) the optimal stimulus parameters for its clinical measurement and (b) its utility in differentiating between normal-hearing and hearing-impaired ears at low-to-mid frequencies (≤2000 Hz) when measured either alone or in conjunction with the 2f1-f2 DPOAE. Two experiments were conducted. In Experiment 1, the effects of primary level, level separation, and frequency separation (f2/f1) on 2f2-f1 DPOAE level were evaluated in normal-hearing ears for low-to-mid f2 frequencies (700–2000 Hz). Moderately high-level primaries (60–70 dB SPL) presented at equal levels or with f2 slightly higher than f1 produced the highest 2f2-f1 DPOAE levels. When the f2/f1 ratio that produced the highest 2f2-f1 DPOAE levels was examined across participants, the mean optimal f2/f1 ratio across f2 frequencies and primary level separations was 1.08. In Experiment 2, the accuracy with which DPOAE level or signal-to-noise ratio identified hearing status at the f2 frequency as normal or impaired was evaluated using clinical decision analysis. The 2f2-f1 and 2f1-f2 DPOAEs were measured from both normal-hearing and hearing-impaired ears using 2 sets of stimulus parameters: (a) the traditional parameters for measuring the 2f1-f2 DPOAE (f2/f1 = 1.22; L1, L2 = 65, 55 dB SPL) and (b) the new parameters that were deemed optimal for the 2f2-f1 DPOAE in Experiment 1 (f2/f1 = 1.073, L1 and L2 = 65 dB SPL). Identification of hearing status using 2f2-f1 DPOAE level and signal-to-noise ratio was more accurate when the new stimulus parameters were used compared with the results achieved when the 2f2-f1 DPOAE was recorded using the traditional parameters. However, identification of hearing status was less accurate for the 2f2-f1 DPOAE measured using the new parameters than for the 2f1-f2 DPOAE measured using the traditional parameters. No statistically significant improvements in test performance were achieved when the information from the 2 DPOAEs was combined, either by summing the DPOAE levels or by using logistic regression analysis.

1993 ◽  
Vol 94 (5) ◽  
pp. 2639-2648 ◽  
Author(s):  
Michael P. Gorga ◽  
Stephen T. Neely ◽  
Brenda M. Bergman ◽  
Kathryn L. Beauchaine ◽  
Jan R. Kaminski ◽  
...  

Author(s):  
Rouviere De Waal ◽  
René Hugo ◽  
Maggi Soer ◽  
Johann J. Krüger

Normal and impaired pure tone thresholds (PTTs) were predicted from distortion product otoacoustic emissions (DP using a feed-forward artificial neural network (ANN) with a back-propagation training algorithm. The ANN used a present and absent DPOAEs from eight DP grams, (2fl -f2 = 406 - 4031 Hz) to predict PTTs at 0.5, 1, 2 and 4 kHz. With normal hearing as < 25 dB HL, prediction accuracy of normal hearing was 94% at 500, 88% at 1000, 88% at 2000 and 93% at 4000 Hz. Prediction of hearing-impaired categories was less accurate, due to insufficient data for the ANN to train on. This research indicates the possibility of accurately predicting hearing ability within 10 dB in normal hearing individuals and in hearing-impaired listeners with DPOAEs and ANNsfrom 500 - 4000 Hz.


2004 ◽  
Vol 116 (4) ◽  
pp. 2395-2405 ◽  
Author(s):  
Mead C. Killion ◽  
Patricia A. Niquette ◽  
Gail I. Gudmundsen ◽  
Lawrence J. Revit ◽  
Shilpi Banerjee

1985 ◽  
Vol 28 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Sandra Gordon-Salant

The purpose of this investigation was to determine whether normal-hearing and hearing-impaired listeners perceive phoneme features differently in noise and to determine whether phoneme perception changes as a fuction of signal-to-noise ratio (S/N). Consonant-vowel recognition by normal-hearing and hearing-impaired listeners was assessed in quiet and in three noise conditions. Analysis of total percent correct recognition scores revealed significant effects of hearing status, S/N, and vowel context. Patterns of phoneme errors were analyzed by INDSCAL, Derived consonant features that accounted for phoneme errors by both subject groups were similar to ones reported by other investigators. However, weightings associated with the individual features varied with changes in noise condition. Although hearing-impaired listeners exhibited poorer overall nonsense syllable recognition scores in noise than normal-hearing listeners, no specific set of features emerged from the multidimensional scaling procedures that could uniquely account for this performance deficit.


Sign in / Sign up

Export Citation Format

Share Document