Children's Speech Perception in Noise: Evidence for Dissociation From Language and Working Memory

2018 ◽  
Vol 61 (5) ◽  
pp. 1294-1305 ◽  
Author(s):  
Beula M. Magimairaj ◽  
Naveen K. Nagaraj ◽  
Natalie J. Benafield

Purpose We examined the association between speech perception in noise (SPIN), language abilities, and working memory (WM) capacity in school-age children. Existing studies supporting the Ease of Language Understanding (ELU) model suggest that WM capacity plays a significant role in adverse listening situations. Method Eighty-three children between the ages of 7 to 11 years participated. The sample represented a continuum of individual differences in attention, memory, and language abilities. All children had normal-range hearing and normal-range nonverbal IQ. Children completed the Bamford–Kowal–Bench Speech-in-Noise Test (BKB-SIN; Etymotic Research, 2005), a selective auditory attention task, and multiple measures of language and WM. Results Partial correlations (controlling for age) showed significant positive associations among attention, memory, and language measures. However, BKB-SIN did not correlate significantly with any of the other measures. Principal component analysis revealed a distinct WM factor and a distinct language factor. BKB-SIN loaded robustly as a distinct 3rd factor with minimal secondary loading from sentence recall and short-term memory. Nonverbal IQ loaded as a 4th factor. Conclusions Results did not support an association between SPIN and WM capacity in children. However, in this study, a single SPIN measure was used. Future studies using multiple SPIN measures are warranted. Evidence from the current study supports the use of BKB-SIN as clinical measure of speech perception ability because it was not influenced by variation in children's language and memory abilities. More large-scale studies in school-age children are needed to replicate the proposed role played by WM in adverse listening situations.

2013 ◽  
Vol 24 (09) ◽  
pp. 867-878 ◽  
Author(s):  
Asha Yathiraj ◽  
Akshay Raj Maggu

Background: The presence of auditory processing disorder in school-age children has been documented (Katz and Wilde, 1985; Chermak and Musiek, 1997; Jerger and Musiek, 2000; Muthuselvi and Yathiraj, 2009). In order to identify these children early, there is a need for a screening test that is not very time-consuming. Purpose: The present study aimed to evaluate the independence of four subsections of the Screening Test for Auditory Processing (STAP) developed by Yathiraj and Maggu (2012). The test was designed to address auditory separation/closure, binaural integration, temporal resolution, and auditory memory in school-age children. The study also aimed to examine the number of children who are at risk for different auditory processes. Research Design: Factor analysis research design was used in the current study. Study Sample: Four hundred school-age children consisting of 218 males and 182 females were randomly selected from 2400 children attending three schools. The children, aged 8 to 13 yr, were in grade three to eight class placements. Data Collection and Analyses: The children were evaluated on the four subsections of the STAP (speech perception in noise, dichotic consonant-vowel [CV], gap detection, and auditory memory) in a quiet room within their school. The responses were analyzed using principal component analysis (PCA) and confirmatory factor analysis (CFA). In addition, the data were also analyzed to determine the number of children who were at risk for an auditory processing disorder (APD). Results: Based on the PCA, three components with Eigen values greater than 1 were extracted. The orthogonal rotation of the variables using the Varimax technique revealed that component 1 consisted of binaural integration, component 2 consisted of temporal resolution, and component 3 was shared by auditory separation/closure and auditory memory. These findings were confirmed using CFA, where the predicted model displayed a good fit with or without the inclusion of the auditory memory subsection. It was determined that 16% of the children were at risk for APD on one or more of the subsections of STAP. Among these 16%, the auditory memory subsection was the most affected (73.4%), followed by binaural integration (65.6%), auditory separation/closure (59.4%), and temporal resolution (53.1%). Conclusion: The current study revealed that the four subsections of STAP merged to form three distinct components. Dichotic CV and gap detection formed two independent components while speech perception in noise and auditory memory merged to form a single component. This indicates a possible relationship between auditory memory and speech perception in noise as suggested by Katz (1992). Thus, STAP is able to detect three different components related to auditory processing. The study also indicates that the number of children at risk for each of the different auditory processes vary. Ongoing evaluation will shed light on the usefulness of the subsections of STAP in identifying auditory processing problems. In addition to conducting the APD screening test, it is also recommended that a hearing screening be done to rule out peripheral hearing problems when hearing screening programs are not conducted in schools.


2011 ◽  
Vol 7 (1) ◽  
pp. 8-14
Author(s):  
Robert Moore ◽  
Susan Gordon-Hickey

The purpose of this article is to propose 4 dimensions for consideration in hearing aid fittings and 4 tests to evaluate those dimensions. The 4 dimensions and tests are (a) working memory, evaluated by the Revised Speech Perception in Noise test (Bilger, Nuetzel, & Rabinowitz, 1984); (b) performance in noise, evaluated by the Quick Speech in Noise test (QSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004); (c) acceptance of noise, evaluated by the Acceptable Noise Level test (ANL; Nabelek, Tucker, & Letowski, 1991); and (d) performance versus perception, evaluated by the Perceptual–Performance test (PPT; Saunders & Cienkowski, 2002). The authors discuss the 4 dimensions and tests in the context of improving the quality of hearing aid fittings.


Author(s):  
Santiago Vernucci ◽  
Yesica Aydmune ◽  
María Laura Andrés ◽  
Débora Inés Burin ◽  
Lorena Canet‐Juric

2017 ◽  
Vol 42 (3) ◽  
pp. 357-372 ◽  
Author(s):  
Jarmo Hämäläinen ◽  
Nicole Landi ◽  
Otto Loberg ◽  
Kaisa Lohvansuu ◽  
Kenneth Pugh ◽  
...  

Development of reading skills has been shown to be tightly linked to phonological processing skills and to some extent to speech perception abilities. Although speech perception is also known to play a role in reading development, it is not clear which processes underlie this connection. Using event-related potentials (ERPs) we investigated the speech processing mechanisms for common and uncommon sound contrasts (/ba/-/da/-/ga/ and /ata/-/at: a/) with respect to the native language of school-age children in Finland and the US. In addition, a comprehensive behavioral test battery of reading and phonological processing was administered. ERPs revealed that the children could discriminate between the speech sound contrasts (place of articulation and phoneme length) regardless of their native language. No differences emerged between the Finnish and US children in their change detection responses. The brain responses to the phoneme length contrast, however, correlated robustly with reading scores in the US children, with larger responses being linked to poorer reading skills. Finnish children also showed correlations between the reading and phonological measures and ERP responses, but the pattern of results was not as clear as for the US children. The results indicate that speech perception is linked to reading skills and this link is more robust for uncommon speech sound contrasts.


Sign in / Sign up

Export Citation Format

Share Document