Fire regimes and forest changes in mid and upper montane forests of the southern Cascades, Lassen Volcanic National Park, California, U.S.A.

2000 ◽  
Vol 27 (1) ◽  
pp. 87-104 ◽  
Author(s):  
A. H. Taylor
2010 ◽  
Vol 58 (4) ◽  
pp. 300 ◽  
Author(s):  
Jeremy Russell-Smith ◽  
Cameron P. Yates ◽  
Chris Brock ◽  
Vanessa C. Westcott

Few data are available concerning contemporary fire regimes and the responses of fire interval-sensitive vegetation types in semiarid woodland savanna landscapes of northern Australia. For a 10 300 km2 semiarid portion of Gregory National Park, in the present paper we describe (1) components of the contemporary fire regime for 1998–2008, on the basis of assessments derived from Landsat and MODIS imagery, (2) for the same period, the population dynamics, and characteristic fine-fuel loads associated with Acacia shirleyi Maiden (lancewood), an obligate seeder tree species occurring in dense monodominant stands, and (3) the fire responses of woody species, and fine-fuel dynamics, sampled in 41 plots comprising shrubby open-woodland over spinifex hummock grassland. While rain-year (July–June) rainfall was consistently reliable over the study period, annual fire extent fluctuated markedly, with an average of 29% being fire affected, mostly in the latter part of the year under relatively harsh fire-climate conditions. Collectively, such conditions facilitated short fire-return intervals, with 30% of the study area experiencing a repeat fire within 1 year, and 80% experiencing a repeat fire within 3 years. Fine fuels associated with the interior of lancewood thickets were characteristically small (<1 t ha–1). Fine fuels dominated by spinifex (Triodia spp.) were found to accumulate at rates equivalent to those observed under higher-rainfall conditions. Stand boundaries of A. shirleyi faired poorly under prevailing fire regimes over the study period; in 16 plots, juvenile density declined 62%, and adult stem density and basal area declined by 53% and 40%, respectively. Although the maturation (primary juvenile) period of A. shirleyi is incompletely known, assembled growth rate and phenology data indicated that it is typically >10 years. Of 133 woody species sampled, all trees (n = 26), with the exception of A. shirleyi, were resprouters, and 58% of all shrub species (n = 105) were obligate seeders, with observed primary juvenile periods <5 years. Assembled data generally supported observations made from other northern Australian studies concerning the responses of fire-sensitive woody taxa in rugged, sandstone-derived landscapes, and illustrated the enormous challenges facing ecologically sustainable fire management in such settings. Contemporary fire regimes of Gregory National Park are not ecologically sustainable.


Fact Sheet ◽  
2000 ◽  
Author(s):  
Michael A. Clynne ◽  
Duane E. Champion ◽  
Deborah A. Trimble ◽  
James W. Hendley ◽  
Peter H. Stauffer

Author(s):  
William Romme ◽  
James Walsh

Whitebark pine (Pinus albicaulis) is a keystone species of upper subalpine ecosystems (Tomback et al. 2001), and is especially important in the high-elevation ecosystems of the northern Rocky Mountains (Arno and Hoff 1989). Its seeds are an essential food source for the endangered grizzly bear (Ursus arctos horribilis), particularly in the autumn, prior to winter denning (Mattson and Jonkel 1990, Mattson and Reinhart 1990, Mattson et al. 1992). In the Greater Yellowstone Ecosystem (GYE), biologists have concluded that the fate of grizzlies is intrinsically linked to the health of the whitebark pine communities found in and around Yellowstone National Park (YNP) (Mattson and Merrill 2002). Over the past century, however, whitebark pine has severely declined throughout much of its range as a result of an introduced fungus, white pine blister rust (Cronartium ribicola) (Hoff and Hagle 1990, Smith and Hoffman 2000, McDonald and Hoff 2001), native pine beetle (Dendroctonus ponderosae) infestations (Bartos and Gibson 1990, Kendall and Keane 2001), and, perhaps in some locations, successional replacement related to fire exclusion and fire suppression (Amo 2001). The most common historical whitebark pine ftre regimes are "stand-replacement", and "mixed­ severity" regimes (Morgan et al. 1994, Arno 2000, Arno and Allison-Bunnell2002). In the GYE, mixed-severity ftre regimes have been documented in whitebark pine forests in the Shoshone National forest NW of Cody, WY (Morgan and Bunting 1990), and in NE Yellowstone National Park (Barrett 1994). In Western Montana and Idaho, mixed fire regimes have been documented in whitebark pine communities in the Bob Marshall Wilderness (Keane et al. 1994), Selway-Bitterroot Wilderness (Brown et al. 1994), and the West Bighole Range (Murray et al.1998). Mattson and Reinhart (1990) found a stand­replacing fire regime on the Mount Washburn Massif, within Yellowstone National Park.


2021 ◽  
Vol 30 (4) ◽  
pp. 255
Author(s):  
Jon E. Keeley ◽  
Anne Pfaff ◽  
Anthony C. Caprio

History of prescription burning and wildfires in the three Sierra Nevada National Park Service (NPS) parks and adjacent US Forest Service (USFS) forests is presented. Annual prescription (Rx) burns began in 1968 in Sequoia and Kings Canyon National Parks, followed by Yosemite National Park and Lassen Volcanic National Park. During the last third of the 20th century, USFS national forests adjacent to these parks did limited Rx burns, accounting for very little area burned. However, in 2004, an aggressive annual burn program was initiated in these national forests and in the last decade, area burned by planned prescription burns, relative to area protected, was approximately comparable between these NPS and USFS lands. In 1968, the NPS prescription burning program was unique because it coupled planned Rx burns with managing many lightning-ignited fires for resource benefit. From 1968 to 2017, these natural fires managed for resource benefit averaged the same total area burned as planned Rx burns in the three national parks; thus, they have had a substantial impact on total area burned by prescription. In contrast, on USFS lands, most lightning-ignited fires have been managed for suppression, but increasing attention is being paid to managing wildfires for resource benefit.


1994 ◽  
Vol 21 (2) ◽  
pp. 131 ◽  
Author(s):  
CR Trainor ◽  
JCZ Woinarski

A species-rich lizard community responded variably to a range of experimental fire regimes in a tropical savanna. Heteronotia binoei was the only lizard species that showed a short-term response to fire, decreasing in abundance directly after the early- and late-burns. H. binoei and Diporiphora bilineata were significantly more abundant in early-burn treatments. Carlia amax was more abundant in unburnt and early-burn treatments. C. munda was more abundant in unburnt and early-burn sites. Differences in the relative abundance of species between treatments is attributed to site differences in vegetation structure, and fire-induced changes to the structure of habitat. Early-burn sites were significantly richer in lizard species (P< 0.05); however, overall lizard abundance, Shannon-Wiener diversity and Detrended Correspondence Analysis (DCA) 1 and DCA 2 scores were not significantly different, suggesting that habitat partitioning has a stronger influence than the direct effects of fire. Many lizards were associated with a direct gradient of moisture availability, including a seepage assemblage, with Carlia gracilis and Sphenomorphus darwiniensis correlated with increased moisture, a well-developed canopy and abundant leaf litter. An assemblage associated with the drier end of the gradient included Carlia triacantha, Ctenotus kurnbudj, Diporiphora magna and D. bilineata. The lizard composition of most quadrats was intermediate along the moisture gradient and was associated with typical eucalypt savanna communities. Lizard species that largely are restricted to the moist seepage zones may be particularly sensitive to late dry-season fires which alter this habitat type.


2020 ◽  
Vol 9 (5) ◽  
pp. 333
Author(s):  
Nicole C. Inglis ◽  
Jelena Vukomanovic

Fire management in protected areas faces mounting obstacles as climate change alters disturbance regimes, resources are diverted to fighting wildfires, and more people live along the boundaries of parks. Evidence-based prescribed fire management and improved communication with stakeholders is vital to reducing fire risk while maintaining public trust. Numerous national fire databases document when and where natural, prescribed, and human-caused fires have occurred on public lands in the United States. However, these databases are incongruous and non-standardized, making it difficult to visualize spatiotemporal patterns of fire and engage stakeholders in decision-making. We created interactive decision analytics (“VISTAFiRe”) that transform fire history data into clear visualizations of the spatial and temporal dimensions of fire and its management. We demonstrate the utility of our approach using Big Cypress National Preserve and Everglades National Park as examples of protected areas experiencing fire regime change between 1980 and 2017. Our open source visualizations may be applied to any data from the National Park Service Wildland Fire Events Geodatabase, with flexibility to communicate shifts in fire regimes over time, such as the type of ignition, duration and magnitude, and changes in seasonal occurrence. Application of the tool to Everglades and Big Cypress revealed that natural wildfires are occurring earlier in the wildfire season, while human-caused and prescribed wildfires are becoming less and more common, respectively. These new avenues of stakeholder communication are allowing the National Park Service to devise research plans to prepare for environmental change, guide resource allocation, and support decision-making in a clear and timely manner.


2012 ◽  
Vol 9 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Masumbuko Ndabaga Céphas ◽  
Herpigny Basile ◽  
Barbier Nicolas ◽  
Habiyaremye Muhashy François ◽  
Lejoly Jean ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document