scholarly journals Mutational analysis of the J recombination signal sequence binding protein (RBP-J)/Epstein-Barr virus nuclear antigen 2 (EBNA2) and RBP-J/Notch interaction

2001 ◽  
Vol 268 (17) ◽  
pp. 4639-4646 ◽  
Author(s):  
Klaus Peter Fuchs ◽  
Guido Bommer ◽  
Elisabeth Dumont ◽  
Barbara Christoph ◽  
Marc Vidal ◽  
...  
1996 ◽  
Vol 77 (5) ◽  
pp. 991-996 ◽  
Author(s):  
C. Sauder ◽  
N. Gotzinger ◽  
W. H. Schubach ◽  
G. C. Horvath ◽  
E. Kremmer ◽  
...  

1998 ◽  
Vol 72 (2) ◽  
pp. 1365-1376 ◽  
Author(s):  
Anna Sjöblom ◽  
Weiwen Yang ◽  
Lars Palmqvist ◽  
Ann Jansson ◽  
Lars Rymo

ABSTRACT The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is a viral oncogene whose expression is regulated by both viral and cellular factors. EBV nuclear antigen 2 (EBNA2) is a potent transactivator of LMP1 expression in human B cells, and several EBNA2 response elements have been identified in the promoter regulatory sequence (LRS). We have previously shown that an activating transcription factor/cyclic AMP response element (ATF/CRE) site in LRS is involved in EBNA2 responsiveness. We now establish the importance of the ATF/CRE element by mutational analysis and show that both EBNA2-dependent activation and EBNA2-independent activation of the promoter occur via this site but are mediated by separate sets of factors. An electrophoretic mobility shift assay (EMSA) with specific antibodies showed that the ATF-1, CREB-1, ATF-2 and c-Jun factors bind to the site as ATF-1/CREB-1 and ATF-2/c-Jun heterodimers whereas the Sp1 and Sp3 factors bind to an adjacent Sp site. Overexpression of ATF-1 and CREB-1 in the cells by expression vectors demonstrated that homodimeric as well as heterodimeric forms of the factors transactivate the LMP1 promoter in an EBNA2-independent manner. The homodimers of ATF-2 and c-Jun did not significantly stimulate promoter activity. In contrast, the ATF-2/c-Jun heterodimer had only a minor stimulatory effect in the absence of EBNA2 but induced a strong transactivation of the LMP1 promoter when coexpressed with this protein. Evidence for a direct interaction between the ATF-2/c-Jun heterodimeric complex and EBNA2 was obtained by EMSA and coimmunoprecipitation experiments. Thus, our results suggest that EBNA2-induced transactivation via the ATF/CRE site occurs through a direct contact between EBNA2 and an ATF-2/c-Jun heterodimer. EBNA2-independent promoter activation via this site, on the other hand, is mediated by a heterodimeric complex between the ATF-1 and CREB-1 factors.


Science ◽  
1994 ◽  
Vol 265 (5168) ◽  
pp. 92-95 ◽  
Author(s):  
T Henkel ◽  
P. Ling ◽  
S. Hayward ◽  
M. Peterson

2004 ◽  
Vol 85 (10) ◽  
pp. 2755-2765 ◽  
Author(s):  
Chih-Chung Lu ◽  
Chia-Wei Wu ◽  
Shin C. Chang ◽  
Tzu-Yi Chen ◽  
Chwan-Ren Hu ◽  
...  

Epstein–Barr virus (EBV) nuclear antigen 1 (EBNA-1) plays key roles in both the regulation of gene expression and the replication of the EBV genome in latently infected cells. To characterize the RNA-binding activity of EBNA-1, it was demonstrated that EBNA-1 binds efficiently to RNA homopolymers that are composed of poly(G) and weakly to those composed of poly(U). All three RGG boxes of EBNA-1 contributed additively to poly(G)-binding activity and could mediate RNA binding when attached to a heterologous protein in an RNA gel mobility-shift assay. In vitro-transcribed EBV and non-EBV RNA probes revealed that EBNA-1 bound to most RNAs examined and the affinity increased as the content of G and U increased, as demonstrated in competition assays. Among these probes, the 5′ non-coding region (NCR) (nt 131–278) of hepatitis C virus RNA appeared to be the strongest competitor for EBNA-1 binding to the EBV-encoded small nuclear RNA 1 (EBER1) probe, whereas a mutant 5′ NCR RNA with partially disrupted secondary structure was a weak competitor. Furthermore, the interaction of endogenous EBNA-1 and EBER1 in EBV-infected cells was demonstrated by a ribonucleoprotein immunoprecipitation assay. These results revealed that EBNA-1 is a DNA-binding protein with strong binding activity to a relatively broad spectrum of RNA and suggested an additional biological impact of EBNA-1 through its ability to bind to RNA.


Sign in / Sign up

Export Citation Format

Share Document