scholarly journals Differential responses of grass and a dwarf shrub to long-term changes in soil microbial biomass C, N and P following factorial addition of NPK fertilizer, fungicide and labile carbon to a heath

1999 ◽  
Vol 143 (3) ◽  
pp. 523-538 ◽  
Author(s):  
ANDERS MICHELSEN ◽  
ENRICO GRAGLIA ◽  
INGER K. SCHMIDT ◽  
SVEN JONASSON ◽  
DARREN SLEEP ◽  
...  
2011 ◽  
Vol 52 (No. 8) ◽  
pp. 345-352 ◽  
Author(s):  
G. Mühlbachová ◽  
P. Tlustoš

The effects of liming by CaO and CaCO<sub>3</sub> on soil microbial characteristics were studied during laboratory incubation of long-term contaminated arable and grassland soils from the vicinity of lead smelter near Př&iacute;bram (Czech Republic). The CaO treatment showed significant negative effects on soil microbial biomass C and its respiratory activity in both studied soils, despite the fact that microbial biomass C in the grassland soil increased sharply during the first day of incubation. The metabolic quotient (qCO<sub>2</sub>) in soils amended by CaO showed greater values than the control from the second day of incubation, indicating a possible stress of soil microbial pool. The vulnerability of organic matter to CaO could be indicated by the availability of K<sub>2</sub>SO<sub>4</sub>-extractable carbon that increased sharply, particularly at the beginning of the experiment. The amendment of soils by CaCO<sub>3 </sub>moderately increased the soil microbial biomass. The respiratory activity and qCO<sub>2</sub> increased sharply during the first day of incubation, however it is not possible to ascribe them only to microbial activities, but also to CaCO<sub>3</sub> decomposition in hydrogen carbonates, water and CO<sub>2</sub>. The pH values increased more sharply under CaO treatment in comparison to CaCO<sub>3</sub> treatment. The improvement of soil pH by CaCO<sub>3</sub> could be therefore more convenient for soil microbial communities.


2004 ◽  
Vol 40 (3-4) ◽  
pp. 113-121 ◽  
Author(s):  
A.R. Barbhuiya ◽  
A. Arunachalam ◽  
H.N. Pandey ◽  
K. Arunachalam ◽  
M.L. Khan ◽  
...  

2013 ◽  
Vol 33 (18) ◽  
pp. 5615-5622 ◽  
Author(s):  
赵彤 ZHAO Tong ◽  
闫浩 YAN Hao ◽  
蒋跃利 JIANG Yueli ◽  
黄懿梅 HUANG Yimei ◽  
安韶山 AN Shaoshan

2014 ◽  
Vol 34 (13) ◽  
Author(s):  
张静 ZHANG Jing ◽  
马玲 MA Ling ◽  
丁新华 DING Xinhua ◽  
陈旭日 CHEN Xuri ◽  
马伟 MA Wei

2014 ◽  
Vol 1073-1076 ◽  
pp. 638-642
Author(s):  
Hai Ying Guan ◽  
Xin Zhao

In this study, we measured soil microbial biomass C (SMBC) under four different land cover types (canopy, litter, lichen and bare soil) to determine the effects of aridity and salinization on SMBC of a typical desert ecosystem. Results showed that higher SMBC with lower soil salt content and higher soil moisture were found in general if with vegetation, and the SMBC under canopy was especially higher than any other land cover types, which was near double of that of bare soil (115.34μg C g-1 soil vs. 61.88μg C g-1 soil). Linear regression analysis indicated that soil SMBC were positively correlated (p<0.01,r =0.899) with soil moisture but negatively correlated (r =-0.784, p<0.01) with soil salt content. These relationships may represent an evolutionary process, aiding in the conservation of essential vegetation in a fragile desert ecosystem.


Sign in / Sign up

Export Citation Format

Share Document