hydrolytic enzyme
Recently Published Documents


TOTAL DOCUMENTS

433
(FIVE YEARS 101)

H-INDEX

37
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ziang Xie ◽  
Lei Hou ◽  
Shuying Shen ◽  
Yizheng Wu ◽  
Jian Wang ◽  
...  

AbstractMechanical force is critical for the development and remodeling of bone. Here we report that mechanical force regulates the production of the metabolite asymmetric dimethylarginine (ADMA) via regulating the hydrolytic enzyme dimethylarginine dimethylaminohydrolase 1 (Ddah1) expression in osteoblasts. The presence of -394 4 N del/ins polymorphism of Ddah1 and higher serum ADMA concentration are negatively associated with bone mineral density. Global or osteoblast-specific deletion of Ddah1 leads to increased ADMA level but reduced bone formation. Further molecular study unveils that mechanical stimulation enhances TAZ/SMAD4-induced Ddah1 transcription. Deletion of Ddah1 in osteoblast-lineage cells fails to respond to mechanical stimulus-associated bone formation. Taken together, the study reveals mechanical force is capable of down-regulating ADMA to enhance bone formation.


Author(s):  
Bárbara Nunes Batista ◽  
Rosiane Rodrigues Matias ◽  
Rafael Lopes e Oliveira ◽  
Patrícia Melchionna Albuquerque

2021 ◽  
Author(s):  
Elizabeth Bell ◽  
Ross Smithson ◽  
Siobhan Kilbride ◽  
Jake Foster ◽  
Florence Hardy ◽  
...  

The recent discovery of a hydrolytic enzyme, IsPETase, that can deconstruct poly(ethylene) terephthalate (PET), has sparked great interest in biocatalytic approaches to recycle plastics. Realisation of commercial utility will require the development of robust engineered enzymes that meet the demands of industrial processes. Although rationally engineered variants of PETases have been reported, enzymes that have been experimentally optimised through iterative rounds of directed evolution - the go-to method for engineering industrially useful biocatalysts – have not yet been described. Here, we report the development and implementation of an automated, high-throughput directed evolution platform for engineering polymer degrading enzymes. Evaluation of >13,000 IsPETase variants, applying catalytic activity at elevated temperatures as a primary selection pressure, afforded a HotPETase variant with 21 mutations that has a melting temperature of 82.5C and can therefore operate near or above the glass transition temperature of PET (60-70C). HotPETase can depolymerise semi-crystalline PET more rapidly than previously reported PETases and can selectively deconstruct the PET component of a laminated packaging multi-material. Structural characterisation of HotPETase reveals several interesting features that have emerged during evolution to improve thermotolerance and catalytic performance. Our study establishes laboratory evolution as a platform to engineer useful plastic degrading enzymes to underpin biocatalytic plastic recycling processes.


Author(s):  
Wassila Dendouga ◽  
Mohamed Belhamra

The Algerian Sahara contains numerous hypersaline ecosystems including salt lakes in which the fungal diversity has not been characterized. The abundance and diversity of soil microofungi in three salt lakes in southeastern Algeria was investigated together with their profiles of hydrolytic enzyme. Fungal population size and relative abundance were determined in about 75 soil samples by plate count. From 69 fungal isolates, 46.38% were Aspergillus, 20.29% were Penicillium and 11.59% belonging to Cladosporium genus. The sixty-nine isolates have been studied at different constant temperatures and salinities. All fungal isolates are halotolerant or halophiles with the ability to grow at 50°C. The screening for extracellular halophilic enzymes at 40°C showed that 69.57% of the isolates were able to produce at least two types of the screened enzymes. Protease was the most abundant enzyme detected in 60.87% of the total isolates. The results obtained of all the growth tests indicate the adaptability of fungal isolates tested to the extreme conditions and their possible utilisation as producers of halophilic-active hydrolytic enzymes.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1781
Author(s):  
Yu-Lian Wei ◽  
Qiu-Shi Li ◽  
Zhen Bai ◽  
Qing-Xue Wu

Pinus koraiensis Sieb. et Zucc. is an endemic and dominant tree in temperate zone needle broad-leaf mixed forest and has great economic and ecological value. As the barrier, pine bark has many important functions. However, the ecological functions and forming mechanism of bark fungal community are poorly understood. The aim of this study was to reveal the fungal community of Korean pine bark from Changbai Nature Reserve of Northeast China. Based on Illumina Hiseq2000 platform with five different types from three sites, the results showed that the bark types and collecting sites have strong influence on the fungal community structure. CCA demonstrates the physico-chemical properties of barks and sample collecting height are important factors. Spearman’s correlation coefficients between dominant ASVs and these factors showed the impact in detail. Dominant ASVs in living and dead tree bark are animal or plant pathogens mainly, and they are negative with the total N and P. Meanwhile, wood saprotroph and other undefined saprotroph fungi occur in the bark near the ground and they prefer the substrate with higher total N and P content. Furthermore, enzymes activities including lignin-related oxidoreductases, cellulose and hydrolytic enzyme are affected significantly by the bark’s physico-chemical properties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marion Urvoy ◽  
Raphaël Lami ◽  
Catherine Dreanno ◽  
Daniel Delmas ◽  
Stéphane L’Helguen ◽  
...  

Heterotrophic microbial communities play a central role in biogeochemical cycles in the ocean by degrading organic matter through the synthesis of extracellular hydrolytic enzymes. Their hydrolysis rates result from the community’s genomic potential and the differential expression of this genomic potential. Cell-cell communication pathways such as quorum sensing (QS) could impact both aspects and, consequently, structure marine ecosystem functioning. However, the role of QS communications in complex natural assemblages remains largely unknown. In this study, we investigated whether N-acylhomoserine lactones (AHLs), a type of QS signal, could regulate both hydrolytic activities and the bacterial community composition (BCC) of marine planktonic assemblages. To this extent, we carried out two microcosm experiments, adding five different AHLs to bacterial communities sampled in coastal waters (during early and peak bloom) and monitoring their impact on enzymatic activities and diversity over 48 h. Several specific enzymatic activities were impacted during both experiments, as early as 6 h after the AHL amendments. The BCC was also significantly impacted by the treatments after 48 h, and correlated with the expression of the hydrolytic activities, suggesting that changes in hydrolytic intensities may drive changes in BCC. Overall, our results suggest that QS communication could participate in structuring both the function and diversity of marine bacterial communities.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3454
Author(s):  
Prabhuanand Selvaraj ◽  
Mikiei Tanaka ◽  
Jie Wen ◽  
Yumin Zhang

Modulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes. Spatial learning and memory deficits examined by Morris water maze between three and four weeks post-TBI were also reversed in the drug treated animals. Administration of MJN110 selectively elevated the levels of 2-AG and reduced the production of arachidonic acid (AA) and prostaglandin E2 (PGE2) in the TBI mouse brain. The increased production of proinflammatory cytokines, accumulation of astrocytes and microglia in the TBI mouse ipsilateral cerebral cortex and hippocampus were significantly reduced by MJN110 treatment. Neuronal cell death was also attenuated in the drug treated animals. MJN110 treatment normalized the expression of the NMDA receptor subunits NR2A and NR2B, the AMPA receptor subunits GluR1 and GluR2, and the GABAA receptor subunits α1, β2,3 and γ2, which were all reduced at 1, 2 and 4 weeks post-injury. The reduced inflammatory response and restored glutamate and GABA receptor expression likely contribute to the improved motor function, learning and memory in the MJN110 treated animals. The therapeutic effects of MJN110 were partially mediated by activation of CB1 and CB2 cannabinoid receptors and were eliminated when it was co-administered with DO34, a novel inhibitor of the 2-AG biosynthetic enzymes. Our results suggest that augmentation of the endogenous levels of 2-AG can be therapeutically useful in the treatment of TBI by suppressing neuroinflammation and maintaining the balance between excitatory and inhibitory neurotransmission.


Sign in / Sign up

Export Citation Format

Share Document