soil salt content
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 1)

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3325
Author(s):  
Qian Zhang ◽  
Yanfang Diao ◽  
Guiyu Yang ◽  
Zhigong Peng ◽  
Gang Wang ◽  
...  

The construction of ecological irrigation districts is of great significance to protect the Yellow River ecology and achieve sustainable development of the local ecological economy. Taking the ecological irrigation district of Helan County as the study area, a health evaluation index system of the irrigation district was established, including three primary indexes of ecological environment, modernization level, and agricultural production and benefit, and 20 secondary indexes. Then, the Topsis method, entropy weight evaluation method, fuzzy pattern recognition model, and variable fuzzy model were used to evaluate the health of the Helan ecological irrigation district. In order to avoid the one-sidedness of the evaluation results of a single evaluation method, a combined evaluation method named deviation maximization combined evaluation method was used to combine each single evaluation result. The evaluation results by the combined evaluation method showed the following: (1) The ecological health of Helan irrigation district had a trend of becoming better from 2007 to 2016. (2) The grey correlation analysis showed that the soil salt content, groundwater depth, canal lining rate, ratio of efficient water-saving irrigation area, information level of the irrigation district, water productivity, agricultural unilateral aquatic output value, irrigation water consumption per mu, and coefficient of effective utilization of farmland irrigation water were closely related to the evaluation results. (3) In order to effectively improve the ecological health of Helan irrigation districts, it is necessary to reduce soil salt content and groundwater salinity, increase canal linings, promote water-saving irrigation measures, and agricultural information construction, etc.


2021 ◽  
Author(s):  
Shoule Wang ◽  
Zhenyong Zhao ◽  
Shaoqing Ge ◽  
Ke Zhang ◽  
Changyan Tian ◽  
...  

Abstract Background and aims Halophytes possess the capacity to uptake high levels of salt through physiological processes and their root architecture. Here, we investigated whether halophyte/non-halophyte intercropping in saline soil decreases the soil salt content and contains root-dialogue. Methods Field and pot experiments were conducted to determine the plant biomasses and salt and nutrient distributions in three suaeda (Suaeda salsa) / maize (Zea mays L.) intercropping systems. The three treatments were set up by non-barrier, nylon barrier and plastic barrier between plant roots. Results The biomass of the non-barrier-treated maize was significantly lower than that of the nylon barrier-treated maize, whereas the suaeda root biomass showed a limited increase. The soil salt content negatively affected the non-barrier group’s roots compared with those in the nylon and plastic barrier-treated groups, and it was also higher on the maize side of the nylon-barrier treatment. There were higher available nitrogen and phosphorus contents in the soil of the non-barrier- and nylon barrier-treated groups compared with the plastic barrier-treated group. In addition, the pH was lower, and the available potassium content was higher, which suggested that rhizospheric processes occurred between the two species. Conclusions The suaeda/maize intercropping would decrease the soil salt content, and they also revealed potential rhizospheric effects though the role of root, which provides an effective way for the improvement of saline-alkali land.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 559
Author(s):  
Libing Wang ◽  
Bo Zhang ◽  
Qian Shen ◽  
Yue Yao ◽  
Shengyin Zhang ◽  
...  

Soil salinity due to irrigation diversion affects regional agriculture, and the development of soil composition estimation models for the dynamic monitoring of regional salinity is important for salinity control. In this study, we evaluated the performance of hyperspectral data measured using an analytical spectral device (ASD) field spec standard-res hand-held spectrometer and satellite sensor visible shortwave infrared advanced hyperspectral imager (AHSI) in estimating the soil salt content (SSC). First derivative analysis (FDA) and principal component analysis (PCA) were applied to the data using the raw spectra (RS) to select the best model input data. We tested the ability of these three groups of data as input data for partial least squares regression (PLSR), principal component regression (PCR), and multiple linear regression (MLR). Finally, an estimation model of the SSC, Na+, Cl−, and SO42− contents was established using the best input data and modeling method, and a spatial distribution map of the soil composition content was drawn. The results show that the soil spectra obtained from the satellite hyperspectral data (AHSI) and laboratory spectral data (ASD) were consistent when the SSC was low, and as the SSC increased, the spectral curves of the ASD data showed little change in the curve characteristics, while the AHSI data showed more pronounced features, and this change was manifested in the AHSI images as darker pixels with a lower SSC and brighter pixels with a higher SSC. The AHSI data demonstrated a strong response to the change in SSC; therefore, the AHSI data had a greater advantage compared with the ASD data in estimating the soil salt content. In the modeling process, RS performed the best in estimating the SSC and Na+ content, with the R2 reaching 0.79 and 0.58, respectively, and obtaining low root mean squared error (RMSE) values. FDA and PCA performed the best in estimating Cl− and SO42−, while MLR outperformed PLSR and PCR in estimating the content of the soil components in the region. In addition, the hyperspectral camera data used in this study were very cost-effective and can potentially be used for the evaluation of soil salinization with a wide range and high accuracy, thus reducing the errors associated with the collection of individual samples using hand-held hyperspectral instruments.


2021 ◽  
Vol 13 (2) ◽  
pp. 822
Author(s):  
Lingling Bian ◽  
Juanle Wang ◽  
Jing Liu ◽  
Baomin Han

Soil salinization poses a significant challenge for achieving sustainable utilization of land resources, especially in coastal, arid, and semi-arid areas. Timely monitoring of soil salt content and its spatial distribution is conducive to secure efficient agricultural development in these regions. In this study, to address the persistent problem of soil salinization in the Yellow River Delta in China, the feature space method was used to construct multiple feature spaces of surface albedo (Albedo)–modified soil-adjusted vegetation index (MSAVI), salinity index (SI)–Albedo, and SI–normalized difference vegetation index (NDVI), and an optimal inversion model of soil salinity was developed. Based on Landsat 8 Operational Land Imager (OLI) image data and simultaneous field-measured sampling data, an optimal model from 2015 to 2019 was used to obtain the soil salt content in the region at a 30 m resolution. The results show that the proportion of soil salinization in 2015 and 2019 was approximately 76% and 70%, respectively, and overall soil salinization showed a downward trend. The salinization-mitigated areas are primarily distributed in the southwest of the Yellow River Delta, and the aggravated areas are distributed in the northeast and southeast. In general, the spatial variation characteristics show an increasing trend from the southwest to the eastern coastal areas, corresponding to the formation mechanism of salt accumulation in the region. Further, corresponding sustainable development countermeasures and suggestions were proposed for different salinity levels. Meanwhile, this study revealed that the SI–Albedo feature space model is the most suitable for inversion of salinization in coastal areas.


2020 ◽  
Vol 100 (5) ◽  
pp. 568-574
Author(s):  
Zhe Wu ◽  
Zhizhong Xue ◽  
Xuelin Lu ◽  
Yinsuo Jia ◽  
Xiuping Wang ◽  
...  

Abelmoschus manihot (L.) Medik. is a medicinal and edible plant. To evaluate its suitability for cultivation on the coastal saline-alkali land in northern China for high quality functional products, salt-tolerance identification and flavonoid contents were evaluated under saline treatments. Results showed that the salt-tolerance threshold of A. manihot ranged from 4.1 to 6.9 g L−1; however, low soil salt content (<3 g L−1) had the best growth and accumulation of total flavonoids. Sixteen kinds of common functional components such as hyperoside, rutoside, and quercetin were found. Of these components, the four (myricetin-3-0-glucoside, rutoside, quercetin-3′-0-glucoside, and gossypetin-8-0-β-d-glucuronic acid) with the highest content were chosen as the quality evaluation indexes. High levels of quality and yield occurred at a soil salt content of 3 g L−1. Our results suggested that soil salt content should not exceed 3 g L−1 in field cultivation for high quality and high yield of A. manihot.


Sign in / Sign up

Export Citation Format

Share Document