scholarly journals Soluble forms of NCAM and F3 neuronal cell adhesion molecules promote Schwann cell migration: identification of protein tyrosine phosphatases ζ/β as the putative F3 receptors on Schwann cells

2001 ◽  
Vol 78 (4) ◽  
pp. 767-778 ◽  
Author(s):  
Dimitra Thomaidou ◽  
Delphine Coquillat ◽  
Stathis Meintanis ◽  
Masaharu Noda ◽  
Genevieve Rougon ◽  
...  
1986 ◽  
Vol 103 (6) ◽  
pp. 2439-2448 ◽  
Author(s):  
R Martini ◽  
M Schachner

The cellular and subcellular localization of the neural cell adhesion molecules L1, N-CAM, and myelin-associated glycoprotein (MAG), their shared carbohydrate epitope L2/HNK-1, and the myelin basic protein (MBP) were studied by pre- and post-embedding immunoelectron microscopic labeling procedures in developing mouse sciatic nerve. L1 and N-CAM showed a similar staining pattern. Both were localized on small, non-myelinated, fasciculating axons and axons ensheathed by non-myelinating Schwann cells. Schwann cells were also positive for L1 and N-CAM in their non-myelinating state and at the onset of myelination, when the Schwann cell processes had turned approximately 1.5 loops. Thereafter, neither axon nor Schwann cell could be detected to express the L1 antigen, whereas N-CAM was found in the periaxonal area and, more weakly, in compact myelin of myelinated fibers. Compact myelin, Schmidt-Lanterman incisures, paranodal loops, and finger-like processes of Schwann cells at nodes of Ranvier were L1-negative. At the nodes of Ranvier, the axolemma was also always L1- and N-CAM-negative. The L2/HNK-1 carbohydrate epitope coincided in its cellular and subcellular localization most closely to that observed for L1. MAG appeared on Schwann cells at the time L1 expression ceased. MAG was then expressed at sites of axon-myelinating Schwann cell apposition and non-compacted loops of developing myelin. When compaction of myelin occurred, MAG remained present only at the axon-Schwann cell interface; Schmidt-Lanterman incisures, inner and outer mesaxons, and paranodal loops, but not at finger-like processes of Schwann cells at nodes of Ranvier or compacted myelin. All three adhesion molecules and the L2/HNK-1 epitope could be detected in a non-uniform staining pattern in basement membrane of Schwann cells and collagen fibrils of the endoneurium. MBP was detectable in compacted myelin, but not in Schmidt-Lanterman incisures, inner and outer mesaxon, paranodal loops, and finger-like processes at nodes of Ranvier, nor in the periaxonal regions of myelinated fibers, thus showing a complementary distribution to MAG. These studies show that axon-Schwann cell interactions are characterized by the sequential appearance of cell adhesion molecules and MBP apparently coordinated in time and space. From this sequence it may be deduced that L1 and N-CAM are involved in fasciculation, initial axon-Schwann cell interaction, and onset of myelination, with MAG to follow and MBP to appear only in compacted myelin. In contrast to L1, N-CAM may be further involved in the maintenance of compact myelin and axon-myelin apposition of larger diameter axons.


1997 ◽  
Vol 138 (3) ◽  
pp. 681-696 ◽  
Author(s):  
Babette Aicher ◽  
Markus M. Lerch ◽  
Thomas Müller ◽  
James Schilling ◽  
Axel Ullrich

Most receptor-like protein tyrosine phosphatases (PTPases) display a high degree of homology with cell adhesion molecules in their extracellular domains. We studied the functional significance of processing for the receptor-like PTPases LAR and PTPσ. PTPσ biosynthesis and intracellular processing resembled that of the related PTPase LAR and was expressed on the cell surface as a two-subunit complex. Both LAR and PTPσ underwent further proteolytical processing upon treatment of cells with either calcium ionophore A23187 or phorbol ester TPA. Induction of LAR processing by TPA in 293 cells did require overexpression of PKCα. Induced proteolysis resulted in shedding of the extracellular domains of both PTPases. This was in agreement with the identification of a specific PTPσ cleavage site between amino acids Pro821 and Ile822. Confocal microscopy studies identified adherens junctions and desmosomes as the preferential subcellular localization for both PTPases matching that of plakoglobin. Consistent with this observation, we found direct association of plakoglobin and β-catenin with the intracellular domain of LAR in vitro. Taken together, these data suggested an involvement of LAR and PTPσ in the regulation of cell contacts in concert with cell adhesion molecules of the cadherin/catenin family. After processing and shedding of the extracellular domain, the catalytically active intracellular portions of both PTPases were internalized and redistributed away from the sites of cell–cell contact, suggesting a mechanism that regulates the activity and target specificity of these PTPases. Calcium withdrawal, which led to cell contact disruption, also resulted in internalization but was not associated with prior proteolytic cleavage and shedding of the extracellular domain. We conclude that the subcellular localization of LAR and PTPσ is regulated by at least two independent mechanisms, one of which requires the presence of their extracellular domains and one of which involves the presence of intact cell–cell contacts.


2009 ◽  
Vol 19 ◽  
pp. S123-S125
Author(s):  
E. Bock ◽  
P.S. Walmod ◽  
T. Secher ◽  
V. Berezin

2005 ◽  
Vol 2 (1) ◽  
pp. 27-38 ◽  
Author(s):  
IVO SPIEGEL ◽  
KONSTANTIN ADAMSKY ◽  
MENAHEM EISENBACH ◽  
YAEL ESHED ◽  
ADRIAN SPIEGEL ◽  
...  

The development and maintenance of myelinated nerves in the PNS requires constant and reciprocal communication between Schwann cells and their associated axons. However, little is known about the nature of the cell-surface molecules that mediate axon–glial interactions at the onset of myelination and during maintenance of the myelin sheath in the adult. Based on the rationale that such molecules contain a signal sequence in order to be presented on the cell surface, we have employed a eukaryotic-based, signal-sequence-trap approach to identify novel secreted and membrane-bound molecules that are expressed in myelinating and non-myelinating Schwann cells. Using cDNA libraries derived from dbcAMP-stimulated primary Schwann cells and 3-day-old rat sciatic nerve mRNAs, we generated an extensive list of novel molecules expressed in myelinating nerves in the PNS. Many of the identified proteins are cell-adhesion molecules (CAMs) and extracellular matrix (ECM) components, most of which have not been described previously in Schwann cells. In addition, we have identified several signaling receptors, growth and differentiation factors, ecto-enzymes and proteins that are associated with the endoplasmic reticulum and the Golgi network. We further examined the expression of several of the novel molecules in Schwann cells in culture and in rat sciatic nerve by primer-specific, real-time PCR and in situ hybridization. Our results indicate that myelinating Schwann cells express a battery of novel CAMs that might mediate their interactions with the underlying axons.


1997 ◽  
Vol 151 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Pierre-Hugues Roche ◽  
Dominique Figarella-Branger ◽  
Laurent Daniel ◽  
Nicole Bianco ◽  
William Pellet ◽  
...  

Author(s):  
Di Li ◽  
Fei-Lin Chen ◽  
Ting-Xuan Lu ◽  
Jean-San Chia ◽  
Feng-Chiao Tsai

Sign in / Sign up

Export Citation Format

Share Document