cell adhesion molecules
Recently Published Documents


TOTAL DOCUMENTS

1980
(FIVE YEARS 170)

H-INDEX

115
(FIVE YEARS 8)

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Xiujin Chen ◽  
Nan Zhang ◽  
Yuanyuan Zheng ◽  
Zhichao Tong ◽  
Tuanmin Yang ◽  
...  

Purpose. Osteosarcoma (OS) is the most primary bone malignant tumor in adolescents. Although the treatment of OS has made great progress, patients’ prognosis remains poor due to tumor invasion and metastasis. Materials and Methods. We downloaded the expression profile GSE12865 from the Gene Expression Omnibus database. We screened differential expressed genes (DEGs) by making use of the R limma software package. Based on Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis, we performed the function and pathway enrichment analyses. Then, we constructed a Protein-Protein Interaction network and screened hub genes through the Search Tool for the Retrieval of Interacting Genes. Result. By analyzing the gene expression profile GSE12865, we obtained 703 OS-related DEGs, which contained 166 genes upregulated and 537 genes downregulated. The DEGs were primarily abundant in ribosome, cell adhesion molecules, ubiquitin-ubiquitin ligase activity, and p53 signaling pathway. The hub genes of OS were KDR, CDH5, CD34, CDC42, RBX1, POLR2C, PPP2CA, and RPS2 through PPI network analysis. Finally, GSEA analysis showed that cell adhesion molecules, chemokine signal pathway, transendothelial migration, and focal adhesion were associated with OS. Conclusion. In this study, through analyzing microarray technology and bioinformatics analysis, the hub genes and pathways about OS are identified, and the new molecular mechanism of OS is clarified.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jinzhi Chen ◽  
Liping Jiang ◽  
Xiao-Hua Yu ◽  
Mi Hu ◽  
Yang-Kai Zhang ◽  
...  

Endothelial dysfunction is considered to be an early change in atherosclerosis. Endocan, also known as endothelial cell specific molecule-1, is a soluble proteoglycan mainly secreted by endothelial cells. Inflammatory factors such as IL-1β and TNF-α can up regulate the expression of endocan and then affect the expression of cell adhesion molecules, such as ICAM-1 and VCAM-1, which play an important role in promoting leukocyte migration and inflammatory response. Elevated plasma levels of endocan may reflect endothelial activation and dysfunction, and is considered to be a potential immuno-inflammatory marker that may be related to cardiovascular disease. In the case of hypertension, diabetes, angina pectoris and acute myocardial infarction, the increase or decrease of serum endocan levels is of great significance. Here, we reviewed the current research on endocan, and emphasis its possible clinical value as a prognostic marker of cardiovascular disease. Endocan may be a useful biomarker for the prognosis of cardiovascular disease, but more research is needed on its mechanism of action.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yonghui Zou ◽  
Yi Xu ◽  
Xiaofeng Chen ◽  
Yaoqi Wu ◽  
Longsheng Fu ◽  
...  

Leucine-rich alpha⁃2 glycoprotein 1 (LRG1) is an important member of the leucine-rich repetitive sequence protein family. LRG1 was mainly involved in normal physiological activities of the nervous system, such as synapse formation, synapse growth, the development of nerve processes, neurotransmitter transfer and release, and cell adhesion molecules or ligand-binding proteins. Also, LRG1 affected the development of respiratory diseases, hematological diseases, endocrine diseases, tumor diseases, eye diseases, cardiovascular diseases, rheumatic immune diseases, infectious diseases, etc. LRG1 was a newly discovered important upstream signaling molecule of transforming growth factor⁃β (TGF⁃β) that affected various pathological processes through the TGF⁃β signaling pathway. However, research on LRG1 and its involvement in the occurrence and development of diseases was still in its infancy and the current studies were mainly focused on proteomic detection and basic animal experimental reports. We could reasonably predict that LRG1 might act as a new direction and strategy for the treatment of many diseases.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Matteo Gasparotto ◽  
Yuriko Suemi Hernandez Gomez ◽  
Daniele Peterle ◽  
Alessandro Grinzato ◽  
Federica Zen ◽  
...  

Homo- and heterophilic binding mediated by the immunoglobulin (Ig)-like repeats of cell adhesion molecules play a pivotal role in cell-cell and cell-extracellular matrix interactions. L1CAM is crucial to neuronal differentiation, in both mature and developing nervous systems, and several studies suggest that its functional interactions are mainly mediated by Ig2–Ig2 binding. X-linked mutations in the human L1CAM gene are summarized as L1 diseases, including the most diagnosed CRASH neurodevelopmental syndrome. In silico simulations provided a molecular rationale for CRASH phenotypes resulting from mutations I179S and R184Q in the homophilic binding region of Ig2. A synthetic peptide reproducing such region could both mimic the neuritogenic capacity of L1CAM and rescue neuritogenesis in a cellular model of the CRASH syndrome, where the full L1CAM ectodomain proved ineffective. Presented functional evidence opens the route to the use of L1CAM-derived peptides as biotechnological and therapeutic tools.


2022 ◽  
Vol 12 ◽  
Author(s):  
Dan Xia ◽  
Xinyang Zhang ◽  
Di Deng ◽  
Xiaoyan Ma ◽  
Samer Masri ◽  
...  

Effectively enhancing the activity of inhibitory neurons has great therapeutic potentials since their reduced function/activity has significant contributions to pathology in various brain diseases. We showed previously that NMDAR positive allosteric modulator GNE-8324 and M-8324 selectively increase NMDAR activity on the inhibitory neurons and elevates their activity in vitro and in vivo. Here we examined the impact of long-term administering M-8324 on the functions and transcriptional profiling of parvalbumin-containing neurons in two representative brain regions, primary auditory cortex (Au1) and prelimbic prefrontal cortex (PrL-PFC). We found small changes in key electrophysiological parameters and RNA levels of neurotransmitter receptors, Na+ and Ca2+ channels. In contrast, large differences in cell adhesion molecules and K+ channels were found between Au1 and PrL-PFC in drug-naïve mice, and differences in cell adhesion molecules became much smaller after M-8324 treatment. There was also minor impact of M-8324 on cell cycle and apoptosis, suggesting a fine safety profile.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6328
Author(s):  
Manuela Santarosa ◽  
Roberta Maestro

Cell-to-cell adhesion is a key element in epithelial tissue integrity and homeostasis during embryogenesis, response to damage, and differentiation. Loss of cell adhesion and gain of mesenchymal features, a phenomenon known as epithelial to mesenchymal transition (EMT), are essential steps in cancer progression. Interestingly, downregulation or degradation by endocytosis of epithelial adhesion molecules (e.g., E-cadherin) associates with EMT and promotes cell migration. Autophagy is a physiological intracellular degradation and recycling process. In cancer, it is thought to exert a tumor suppressive role in the early phases of cell transformation but, once cells have gained a fully transformed phenotype, autophagy may fuel malignant progression by promoting EMT and conferring drug resistance. In this review, we discuss the crosstalk between autophagy, EMT, and turnover of epithelial cell adhesion molecules, with particular attention to E-cadherin.


2021 ◽  
Vol 14 ◽  
Author(s):  
Valentina Licheri ◽  
Jonathan L. Brigman

Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.


Sign in / Sign up

Export Citation Format

Share Document