cathepsin e
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 14)

H-INDEX

33
(FIVE YEARS 2)

Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1600
Author(s):  
Fernando Valenzuela ◽  
Javier Fernández ◽  
Marcela Aroca ◽  
Constanza Jiménez ◽  
Daniela Albers ◽  
...  

Atopic dermatitis (AD) is a protease-modulated chronic disorder with heterogenous clinical manifestations which may lead to an imprecise diagnosis. To date, there are no diagnostic protease tests for AD. We explored the gingival crevicular fluid (GCF) protease profile of individuals with moderate/severe AD compared to healthy controls. An exploratory case-control study was conducted. AD patients (n = 23) and controls (n = 21) were enrolled at the International Center for Clinical Studies, Santiago, Chile. Complete dermatological and periodontal evaluations (involving the collection of GCF samples) were made. The levels of 35 proteases were analyzed using a human protease antibody array in matching AD patients (n = 6) and controls (n = 6) with healthy periodontium. The GCF levels of zinc-binding ADAM8, ADAM9, MMP8, Neprilysin/CD10, aspartyl-binding Cathepsin E, serin-binding Protein convertase9, and uPA/Urokinase proteases were lower in moderate/severe AD patients compared to controls (p < 0.05). No inter-group differences in the levels of the other 28 proteases were found. MMP8, Cathepsin E, and ADAM9 were the biomarkers with the highest sensitivity and specificity regarding the detection of AD (p < 0.05). The area under receiver operating characteristic (ROC) curve for MMP8 was 0.83 and MMP8 + ADAMP9 was 0.90, with no significant differences (p = 0.132). A combined model of MMP8, Cathepsin E, and ADAM9 was not considered since it did not converge. Then, levels of MMP8 in GCF were determined using a multiplex bead immunoassay in 23 subjects with AD and 21 healthy subjects. Lower levels of MMP8 in the GCF from the AD group versus healthy group (p = 0.029) were found. This difference remained significant after adjustment by periodontitis (p = 0.042). MMP8 revealed the diagnostic potential to identify AD patients versus healthy controls, (ROC area = 0.672, p < 0.05). In conclusion, differences in the protease profile between AD and control patients were associated with MMP8, Cathepsin E, and ADAM9. Based on the multiplex assay results, MMP8 was lower in AD patients than controls, suggesting that MMP8 may be a diagnostic biomarker candidate.


Author(s):  
Ericka Velez-Bonet ◽  
Sabrina Kaul ◽  
Corbin Pontious ◽  
Marcus Hong ◽  
Kelly Dubai ◽  
...  

Author(s):  
Fernando Valenzuela ◽  
Javier Fernández ◽  
Marcela Aroca ◽  
Constanza Jiménez ◽  
Daniela Albers ◽  
...  

Atopic dermatitis (AD) is a protease-modulated chronic disorder with heterogenous clinical manifestations which may lead to an imprecise diagnosis. So far, there are no diagnostic protease tests for AD. We explored the gingival crevicular fluid (GCF) protease profile of periodontally-healthy individuals with moderate/severe AD compared to healthy controls. An exploratory case-control study was conducted. Matching AD patients (n=6) and controls (n=6) were enrolled at the International Center for Clinical Studies, Santiago, Chile. Complete dermatological and periodontal evaluations (involving the collection of GCF samples) were made. The levels of 35 proteases were analyzed using a human protease antibody array. The GCF levels of zinc-binding ADAM8, ADAM9, MMP8 and Neprilysin/CD10, aspartyl-binding Cathepsin E, and serin-binding Protein convertase9 and uPA/Urokinase proteases were lower in moderate/severe AD patients compared to controls (p&lt;0.05). No inter-group differences in the levels of the other 28 proteases were found. MMP8, Cathepsin E and ADAM9 were the biomarkers with the highest sensitivity and specificity regarding the detection of AD (p &lt; 0.05). The area under receiver operating characteristic (ROC) curve for MMP-8+ADAMP-9 was 0.90. In conclusion, differences in the protease profile between AD and control patients associated with MMP8, Cathepsin E and ADAM9. MMP8, ADAM9 and Cathepsin E may be useful as combined diagnostic and therapeutic biomarkers of moderate/severe AD.


2020 ◽  
Vol 104 (S3) ◽  
pp. S165-S165
Author(s):  
Haoming Zhou ◽  
Shun Zhou ◽  
Zhuqing Rao ◽  
Song Wei ◽  
Qi Wang ◽  
...  

2020 ◽  
Vol 527 (1) ◽  
pp. 238-241
Author(s):  
Sophie Stotz ◽  
Daniel Bleher ◽  
Hubert Kalbacher ◽  
Andreas Maurer
Keyword(s):  

2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Jie Hou ◽  
Rui Li ◽  
Songlin Qiao ◽  
Xin-xin Chen ◽  
Guangxu Xing ◽  
...  

ABSTRACT Porcine reproductive and respiratory syndrome (PRRS) is a serious viral disease affecting the global swine industry. Its causative agent, PRRS virus (PRRSV), is an enveloped virus, and therefore membrane fusion between its envelope and host cell target membrane is critical for viral infection. Though much research has focused on PRRSV infection, the detailed mechanisms involved in its membrane fusion remain to be elucidated. In the present study, we performed confocal microscopy in combination with a constitutively active (CA) or dominant negative (DN) mutant, specific inhibitors, and small interfering RNAs (siRNAs), as well as multiple other approaches, to explore PRRSV membrane fusion. We first observed that PRRSV membrane fusion occurred in Rab11-recycling endosomes during early infection using labeled virions and subcellular markers. We further demonstrated that low pH and cathepsin E in Rab11-recycling endosomes are critical for PRRSV membrane fusion. Moreover, PRRSV glycoprotein 5 (GP5) is identified as being cleaved by cathepsin E during this process. Taken together, our findings provide in-depth information regarding PRRSV pathogenesis, which support a novel basis for the development of antiviral drugs and vaccines. IMPORTANCE PRRS, caused by PRRSV, is an economically critical factor in pig farming worldwide. As PRRSV is a lipid membrane-wrapped virus, merging of the PRRSV envelope with the host cell membrane is indispensable for viral infection. However, there is a lack of knowledge on its membrane fusion. Here, we first explored when and where PRRSV membrane fusion occurs. Furthermore, we determined which host cell factors were involved in the process. Importantly, PRRSV GP5 is shown to be cleaved by cathepsin E during membrane fusion. Our work not only provides information on PRRSV membrane fusion for the first time but also deepens our understanding of the molecular mechanisms of PRRSV infection, which provides a foundation for future applications in the prevention and control of PRRS.


2019 ◽  
pp. 207-214
Author(s):  
Martin Fusek ◽  
Václav Větvička
Keyword(s):  

Pancreatology ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 951-956 ◽  
Author(s):  
Corbin Pontious ◽  
Sabrina Kaul ◽  
Marcus Hong ◽  
Phil A. Hart ◽  
Somashekar G. Krishna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document