Blood Compatible Design of a Pulsatile Blood Pump Using Computational Fluid Dynamics and Computer-Aided Design and Manufacturing Technology

2003 ◽  
Vol 27 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Eiji Okamoto ◽  
Takuya Hashimoto ◽  
Taku Inoue ◽  
Yoshinori Mitamura
Author(s):  
Xu Zhang ◽  
David J. J. Toal ◽  
Neil W. Bressloff ◽  
Andy J. Keane ◽  
Frederic Witham ◽  
...  

The following paper presents an overview of the Prometheus design system and its applications to gas turbine combustor design. Unlike a traditional “optimizer-centric” method, Prometheus aims to reduce both the level of workflow complexity and rework by taking a more “geometry-centric” approach to design optimization by shifting the control of script generation away from the optimization program to the computer aided design (CAD) package. Prometheus therefore enables significant geometry changes to be automatically reflected in all subsequent scripts necessary for the analysis of a combustor. Prometheus’ current capabilities include automatic fluid volume generation and aero-thermal and thermo-acoustic network generation as well as automatic mesh and computational fluid dynamics (CFD) script generation.


Author(s):  
Avinash T

Abstract: The objective of the present study is to design and analyze semi-tangential ogive bullets using simulatation software such as Computer-aided design & Computational Fluid Dynamics (CFD). It is observed that been a quite steady increase in the bullet research design in the past few decades. The nose section of ballistic bullet is the most important part of the design process. Hence design optimizations are achieved by adjusting the bullet's form to improve precision and stability by reducing its drag force. CFD is the study used to verify the findings. Since provides most accurate results. It is observed that present study optimizes the behavior of the at M= 2.5. This present work shows the flow of air around the bullet surface providing pressure & velocity contours at every segment. The Various parametric studies over bullet model are drag co-efficient, ballistic coefficient and turbulence viscosity are plotted’.


2021 ◽  
Vol 11 (1) ◽  
pp. 144-153
Author(s):  
Zahraa Falah Jali ◽  
Faizah Ibrahim Mahmoud Al-Ghabban

The research aims to identify and apply computer-aided design and Manufacturing technology and its impact on improving product quality and rationalizing costs. The research also aims to spread awareness among departments and workers of the company in question about the importance of computer-aided design and Manufacturing technology and urging them to shift design from manual to computer-aided design. Here, the importance of research emerged because of the flexibility that computer-aided design and Manufacturing technology provideded in formulating, designing and producing the product, and here a problem arose. Researching the necessity of shifting design and production to automated technologies to improve product quality and rationalize cost and time by reducing the number of workers, increasing their efficiency and effectively utilizing information.


Author(s):  
Lei Li ◽  
Carlos F Lange ◽  
Yongsheng Ma

Computational fluid dynamics has been extensively used for fluid flow simulation and thus guiding the flow control device design. However, computational fluid dynamics simulation requires explicit geometry input and complicated solver setup, which is a barrier in case of the cyclic computer-aided design/computational fluid dynamics integrated design process. Tedious human interventions are inevitable to make up the gap. To fix this issue, this work proposed a theoretical framework where the computational fluid dynamics solver setup can be intelligently assisted by the simulation intent capture. Two feature concepts, the fluid physics feature and the dynamic physics feature, have been defined to support the simulation intent capture. A prototype has been developed for the computer-aided design/computational fluid dynamics integrated design implementation without the need of human intervention, where the design intent and computational fluid dynamics simulation intent are associated seamlessly. An outflow control device used in the steam-assisted gravity drainage process is studied using this prototype, and the target performance of the device is effectively optimized.


Author(s):  
Patel Mann B

Abstract: Generative Fluid in Fusion 360 is the recently launched cutting edge technology which is revolutionary for those companies which produces parts and components working on fluid. They always thrive for weight reduction and minimum pressure drop of their components along with no sacrifice at their performance. This can now be done by this new technology at their specified rate. But the cost of running one simulation is equitable for design which it gives to us. Keyword: 1. Additive Manufacturing, 2. Computational fluid dynamics, 3. Computer aided design, 4. Generative Design, 5. Topology optimization 6. fluid mechanics


Sign in / Sign up

Export Citation Format

Share Document