scholarly journals Duck Optimization for Additive Manufacturing Using Generative Design Fluids Path in Fusion360

Author(s):  
Patel Mann B

Abstract: Generative Fluid in Fusion 360 is the recently launched cutting edge technology which is revolutionary for those companies which produces parts and components working on fluid. They always thrive for weight reduction and minimum pressure drop of their components along with no sacrifice at their performance. This can now be done by this new technology at their specified rate. But the cost of running one simulation is equitable for design which it gives to us. Keyword: 1. Additive Manufacturing, 2. Computational fluid dynamics, 3. Computer aided design, 4. Generative Design, 5. Topology optimization 6. fluid mechanics

Author(s):  
Xu Zhang ◽  
David J. J. Toal ◽  
Neil W. Bressloff ◽  
Andy J. Keane ◽  
Frederic Witham ◽  
...  

The following paper presents an overview of the Prometheus design system and its applications to gas turbine combustor design. Unlike a traditional “optimizer-centric” method, Prometheus aims to reduce both the level of workflow complexity and rework by taking a more “geometry-centric” approach to design optimization by shifting the control of script generation away from the optimization program to the computer aided design (CAD) package. Prometheus therefore enables significant geometry changes to be automatically reflected in all subsequent scripts necessary for the analysis of a combustor. Prometheus’ current capabilities include automatic fluid volume generation and aero-thermal and thermo-acoustic network generation as well as automatic mesh and computational fluid dynamics (CFD) script generation.


2021 ◽  
Vol 11 (22) ◽  
pp. 10980
Author(s):  
Enrico Dalpadulo ◽  
Fabio Pini ◽  
Francesco Leali

The use of Topology Optimization techniques has seen a great development since the last decade. The principal contributor to this trend is the widespread use of Additive Manufacturing technologies to effectively build complex and performant structures over different settings. Nevertheless, the use of Topology Optimization in Design for Additive Manufacturing processes is not simple and research aims to fill the gap between theory and practice by evolving at the same time both approaches, workflows, and design software that allow their implementation. Since a strong connection between methodologies and tools exists, this work proposes a method to assess computer-aided design tools or platforms. This can be applied to sustain the key phase for selection and adoption of the computer-aided tools in industrial settings embracing Additive Manufacturing. The workflow for Topology Optimization implementation, the structure of the proposed evaluation approach, and its application, are presented to demonstrate effective usability. The automotive case study is the redesign of internal combustion engine piston to benefit of metal Additive Manufacturing based enhanced product performance. A preliminary finite element model is defined and a Topology Optimization based redesign is concurrently set up through four different commercial computer-based platforms. The method accounting for the assessment of required operations for the design optimization is applied to perform the tools selection phase.


Author(s):  
Avinash T

Abstract: The objective of the present study is to design and analyze semi-tangential ogive bullets using simulatation software such as Computer-aided design & Computational Fluid Dynamics (CFD). It is observed that been a quite steady increase in the bullet research design in the past few decades. The nose section of ballistic bullet is the most important part of the design process. Hence design optimizations are achieved by adjusting the bullet's form to improve precision and stability by reducing its drag force. CFD is the study used to verify the findings. Since provides most accurate results. It is observed that present study optimizes the behavior of the at M= 2.5. This present work shows the flow of air around the bullet surface providing pressure & velocity contours at every segment. The Various parametric studies over bullet model are drag co-efficient, ballistic coefficient and turbulence viscosity are plotted’.


2021 ◽  
Vol 6 (1) ◽  
pp. 48-58
Author(s):  
Mohammad Musa Nisar ◽  
Salman Zia ◽  
Mahmoud Fenoon ◽  
Omar Alquabeh

Nowadays, there are various tools that support the initial stages of design available to use for engineers, the traditional Computer-Aided Design (CAD) has been implemented in the engineering components design and replaced manual drafting. However, with the advances and the rapid technology development, new trends emerged to cope with this evolution, namely, Generative Design, Topology Optimization, and Generative Engineering Design. The method is based on numerical algorithms that generate a variety of design and modelling options based on the criteria and constraints set by the designer to allow further design exploration. Proposed in this paper is an implementation of the generative design of a mechanical pedal with further finite element analysis.


Author(s):  
Lei Li ◽  
Carlos F Lange ◽  
Yongsheng Ma

Computational fluid dynamics has been extensively used for fluid flow simulation and thus guiding the flow control device design. However, computational fluid dynamics simulation requires explicit geometry input and complicated solver setup, which is a barrier in case of the cyclic computer-aided design/computational fluid dynamics integrated design process. Tedious human interventions are inevitable to make up the gap. To fix this issue, this work proposed a theoretical framework where the computational fluid dynamics solver setup can be intelligently assisted by the simulation intent capture. Two feature concepts, the fluid physics feature and the dynamic physics feature, have been defined to support the simulation intent capture. A prototype has been developed for the computer-aided design/computational fluid dynamics integrated design implementation without the need of human intervention, where the design intent and computational fluid dynamics simulation intent are associated seamlessly. An outflow control device used in the steam-assisted gravity drainage process is studied using this prototype, and the target performance of the device is effectively optimized.


2021 ◽  
Vol 55 (5) ◽  
pp. 94-108
Author(s):  
Harlysson W. S. Maia ◽  
Said Mounsif ◽  
Jassiel V. Hernández-Fontes ◽  
Rodolfo Silva

Abstract This paper extends the work of Maia and Said (“Analysis for Resistance Reduction of an Amazon School Boat through Hull Shape Modification Utilizing a CFD Tool,” 2019), proposing the optimization of a school boat hull using genetic algorithms and computational fluid dynamics (CDF) simulations. The study examines a school boat used for the transportation of children to schools in riverine communities of the Brazilian Amazon. The optimization was focused on reducing the hydrodynamic hull resistance by modifying the hull lines, using the NSGA-II (non-dominated sorting genetic algorithm II) algorithm in the CAD (computer aided design) CAESES environment. The objective of the study was to reduce the resistance coefficients: C wp (wave profile) and C wp trans (transverse wave profile), thus reducing the total resistance coefficient (C t) and the generated wave amplitude. Pressure distributions and flow lines were then evaluated to obtain an optimal modified hull with reduced wave emission (lower wave resistance) and, consequently, lower forward resistance. The proposed methodology resulted in a maximum reduction of 5% in the total resistance coefficient C t and in the identification of a trend of geometric variation of the hull for investigation in further studies.


3D Printing ◽  
2017 ◽  
pp. 154-171 ◽  
Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi

Laser additive manufacturing is an advanced manufacturing process for making prototypes as well as functional parts directly from the three dimensional (3D) Computer-Aided Design (CAD) model of the part and the parts are built up adding materials layer after layer, until the part is competed. Of all the additive manufacturing process, laser additive manufacturing is more favoured because of the advantages that laser offers. Laser is characterized by collimated linear beam that can be accurately controlled. This chapter brings to light, the various laser additive manufacturing technologies such as: - selective laser sintering and melting, stereolithography and laser metal deposition. Each of these laser additive manufacturing technologies are described with their merits and demerits as well as their areas of applications. Properties of some of the parts produced through these processes are also reviewed in this chapter.


Sign in / Sign up

Export Citation Format

Share Document