THE GLOBAL WARMING ISSUE - AN OIL COMPANY PERSPECTIVE; PROSPECTS FOR CO2 INJECTION?

2001 ◽  
Vol 8 (1) ◽  
pp. 74-74
Author(s):  
John Shinn
2016 ◽  
Vol 34 (4) ◽  
Author(s):  
Luara Rodrigues Pereira ◽  
Amin Bassrei

ABSTRACT. When considering with greenhouse effect and global warming, carbon dioxide is the main agent. As the major contributors to the increase in global temperature, large companies and corporations have been encouraged to look for ways to reduce the emission of...Keywords: traveltime tomography, reservoir monitoring, geological storage, CO2 injection. RESUMO. Quando tratamos do efeito estufa e aquecimento global temos como seu principal agente o dióxido de carbono. Por serem grandes contribuintes do aumento da temperatura do planeta, grandes empresas...Palavras-chave: tomografia de tempos de trânsito, monitoramento de reservatórios, armazenamento geológico, injeção de CO2.


2016 ◽  
Vol 34 (2) ◽  
Author(s):  
Caio Jean Matto Grosso da Silva ◽  
Amin Bassrei

ABSTRACT. Regardless of whether the cause of the greenhouse effect is anthropogenic, carbon dioxide (CO2) exacerbates global warming because it contributes directly to the increased temperature of the planet. In a geologic context, CO2 can occur in conjunction with porous oil reservoirs...Keywords: seismic diffraction tomography, reservoir monitoring, Gassmann’s equation, CO2 injection RESUMO. Independentemente se a causa do efeito de estufa é antropogênico, o dióxido de carbono (CO2) agrava o aquecimento global porque contribui diretamente para o aumento da temperatura do planeta. Em um contexto geológico, o CO2 pode ocorrer em conjunto com reservatórios de petróleo porosos.Palavras-chave: tomografia sísmica de difração, monitoramento de reservatórios, equação de Gassmann, injeção de CO2.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2011 ◽  
Author(s):  
David P. Nalbone ◽  
Amanda Tuohy ◽  
Kelly Jerome ◽  
Jeremy Boss ◽  
Andrew Fentress ◽  
...  

2008 ◽  
Author(s):  
Michaela Huber ◽  
Leaf Van Boven ◽  
Joshua A. Morris

Sign in / Sign up

Export Citation Format

Share Document