scholarly journals SINGULAR VALUE SELECTION AND GENERALIZED CROSS VALIDATION IN MULTI-FREQUENCY SEISMIC DIFFRACTION TOMOGRAPHY FOR CO2 INJECTION MONITORING

2016 ◽  
Vol 34 (2) ◽  
Author(s):  
Caio Jean Matto Grosso da Silva ◽  
Amin Bassrei

ABSTRACT. Regardless of whether the cause of the greenhouse effect is anthropogenic, carbon dioxide (CO2) exacerbates global warming because it contributes directly to the increased temperature of the planet. In a geologic context, CO2 can occur in conjunction with porous oil reservoirs...Keywords: seismic diffraction tomography, reservoir monitoring, Gassmann’s equation, CO2 injection RESUMO. Independentemente se a causa do efeito de estufa é antropogênico, o dióxido de carbono (CO2) agrava o aquecimento global porque contribui diretamente para o aumento da temperatura do planeta. Em um contexto geológico, o CO2 pode ocorrer em conjunto com reservatórios de petróleo porosos.Palavras-chave: tomografia sísmica de difração, monitoramento de reservatórios, equação de Gassmann, injeção de CO2.

2014 ◽  
Author(s):  
A.. Augustus ◽  
D.. Alexander

Abstract The geologic sequestration of carbon dioxide (GCS) into depleted reservoirs has been contemplated and tested in several projects globally both for permanent storage of carbon dioxide (CO2) and enhancing oil recovery (EOR). Utilization of geologic sequestration as a mitigation strategy to reduce the effects of anthropogenic CO2 into the atmosphere may be costly without proper incentives. This cost can be lowered when incremental oil is recovered in mature fields because of rising oil prices and possibly earning carbon credits for sequestered CO2. The injection of CO2, for most of the infrastructure should be in place for mature fields. Therefore many EOR coupled with CO2 sequestration projects attempt to maximize the recovery of oil whilst storing as much CO2 as possible. Many oil reservoirs are reaching or have reached their maturity therefore secondary and tertiary methods for EOR have become increasingly important for sustainable volumes of oil to be produced. Reservoir simulators have become increasingly important in the pre-evaluation of these projects for proper reservoir management and evaluation. One of the most critical problems when considering the geologic storage of CO2 is the risk of leakage which can lead to seepage from the storage area. In Trinidad and Tobago (T&T) many reservoirs are highly faulted. Some faults form an integral part of the structural traps whilst others are leaky and provide migration pathways for the injected CO2 to return to surface. A simulation study was conducted using the commercial compositional simulator CMG-GEM. The model described in this paper seeks to optimize the injection of CO2 into an oil reservoir with some degree of compartmentalization due to faulting whilst maximizing the amount of incremental oil that can be produced. One of the main considerations will be to maximize the sweep efficiency below the fracture pressure and fault entry pressure. The model is intended for a type of formation likely to be used for storage in Trinidad. We conducted sensitivity analysis on the injection rate and fault transmissibity in an analogous field to those located offshore Trinidad. It was concluded that faults transmissibility affect the overall production of oil reservoirs. Sealing faults stored less CO2 and had less cumulative production than non sealing faults.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Saira ◽  
Emmanuel Ajoma ◽  
Furqan Le-Hussain

Summary Carbon dioxide (CO2) enhanced oil recovery is the most economical technique for carbon capture, usage, and storage. In depleted reservoirs, full or near-miscibility of injected CO2 with oil is difficult to achieve, and immiscible CO2 injection leaves a large volume of oil behind and limits available pore volume (PV) for storing CO2. In this paper, we present an experimental study to delineate the effect of ethanol-treated CO2 injection on oil recovery, net CO2 stored, and amount of ethanol left in the reservoir. We inject CO2 and ethanol-treated CO2 into Bentheimer Sandstone cores representing reservoirs. The oil phase consists of a mixture of 0.65 hexane and 0.35 decane (C6-C10 mixture) by molar fraction in one set of experimental runs, and pure decane (C10) in the other set of experimental runs. All experimental runs are conducted at constant temperature 70°C and various pressures to exhibit immiscibility (9.0 MPa for the C6-C10 mixture and 9.6 MPa for pure C10) or near-miscibility (11.7 MPa for the C6-C10 mixture and 12.1 MPa for pure C10). Pressure differences across the core, oil recovery, and compositions and rates of the produced fluids are recorded during the experimental runs. Ultimate oil recovery under immiscibility is found to be 9 to 15% greater using ethanol-treated CO2 injection than that using pure CO2 injection. Net CO2 stored for pure C10 under immiscibility is found to be 0.134 PV greater during ethanol-treated CO2 injection than during pure CO2 injection. For the C6-C10 mixture under immiscibility, both ethanol-treated CO2 injection and CO2 injection yield the same net CO2 stored. However, for the C6-C10 mixture under near-miscibility,ethanol-treated CO2 injection is found to yield 0.161 PV less net CO2 stored than does pure CO2 injection. These results suggest potential improvement in oil recovery and net CO2 stored using ethanol-treated CO2 injection instead of pure CO2 injection. If economically viable, ethanol-treated CO2 injection could be used as a carbon capture, usage, and storage method in low-pressure reservoirs, for which pure CO2 injection would be infeasible.


Author(s):  
E. J. Jelmy ◽  
Nishanth Thomas ◽  
Dhanu Treasa Mathew ◽  
Jesna Louis ◽  
Nisha T Padmanabhan ◽  
...  

The investigations on anthropogenic carbon dioxide (CO2) capture and conversion have a vital role in eradicating the global warming and energy crisis. In this context, defect- engineered two-dimensional (2D) nanomaterials...


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 413 ◽  
Author(s):  
Silvia Mena ◽  
Iluminada Gallardo ◽  
Gonzalo Guirado

Carbon dioxide (CO2) is a known greenhouse gas, and is the most important contributor to global warming. Therefore, one of the main challenges is to either eliminate or reuse it through the synthesis of value-added products, such as carboxylated derivatives. One of the most promising approaches for activating, capturing, and valorizing CO2 is the use of electrochemical techniques. In the current manuscript, we described an electrocarboxylation route for synthesizing 4-cyanobenzoic acid by valorizing CO2 through the synergistic use of electrochemical techniques (“green technology”) and ionic liquids (ILs) (“green solvents”)—two of the major entries in the general green chemistry tool kit. Moreover, the use of silver cathodes and ILs enabled the electrochemical potential applied to be reduced by more than 0.4 V. The “green” synthesis of those derivatives would provide a suitable environmentally friendly process for the design of plasticizers based on phthalate derivatives.


2016 ◽  
Vol 34 (4) ◽  
Author(s):  
Luara Rodrigues Pereira ◽  
Amin Bassrei

ABSTRACT. When considering with greenhouse effect and global warming, carbon dioxide is the main agent. As the major contributors to the increase in global temperature, large companies and corporations have been encouraged to look for ways to reduce the emission of...Keywords: traveltime tomography, reservoir monitoring, geological storage, CO2 injection. RESUMO. Quando tratamos do efeito estufa e aquecimento global temos como seu principal agente o dióxido de carbono. Por serem grandes contribuintes do aumento da temperatura do planeta, grandes empresas...Palavras-chave: tomografia de tempos de trânsito, monitoramento de reservatórios, armazenamento geológico, injeção de CO2.


Author(s):  
Vijaya Kumar Y.M ◽  
Seema B S

Carbon dioxide (CO2) is the reason of increasing the global warming resulting from human industrial activities, to reduce these emissions of CO2 there is a necessity for sequestration of CO2 into stable forms. The paper summarizes the mechanical properties of concrete when cured on CO2 that is by using CO2 chamber. The research includes designing a concrete mix of M25 and M30 grade as per IS 10262:2009. The experimental study on water cured and CO2 specimens for compression strength were carried out. The results show that for M25 and M30 grade of concrete has achieved increasing value as comparing with 7days of water curing and the duration of 4hour CO2 curing. For M25 grade of concrete has achieved 70% of compression strength and M30 grade of concrete has achieved 65% of compression strength in the duration of 4hours of CO2 cured specimens when compared to 28days of water cured specimens.


2020 ◽  
Author(s):  
Burl Henry

Multiple instances of reductions in anthropogenic Carbon Dioxide and Sulfur Dioxide levels in the atmosphere were examined, and it was found that the only climatic effect was warming from reduced levels of Sulfur Dioxide aerosol pollution. There were no instances of the hypothesized cooling from reduced Carbon Dioxide levels.


Author(s):  
Yihan Xing ◽  
Muk Chen Ong ◽  
Tor Hemmingsen ◽  
Kjell Einar Ellingsen ◽  
Lorents Reinås

Abstract Subsea pipelines and umbilicals are used for the transportation of fluids and electrical power between subsea installations and floating production systems (FPUs). The installation and maintenance of these systems can be expensive. In a conventional subsea field development, the produced fluids can be transported from the well to a FPU where they can be offloaded to a tanker (surface ship). In the case of carbon dioxide (CO2) injection into the well, the direction of flow is reversed, i.e., CO2 flows from the tanker to the FPU, down the riser base and through the subsea pipelines to the well. This offloading process is weather-dependent and cannot be performed in severe weather conditions, i.e., strong winds and large waves. This paper presents a novel subsea shuttle tanker system proposed by Equinor ASA designed to be a possible alternative to subsea pipelines, umbilicals and tanker ships. The subsea shuttle is intended to operate submerged under the sea surface to transport liquid CO2 from an existing offshore/land facility where CO2 is captured to a subsea well where the CO2 is injected into the reservoir. As the shuttle is subsea, it can operate under any type of weather conditions. Even though the subsea shuttle is proposed as a vehicle for liquid CO2 transport, it can also transport other types of cargo such as hydrocarbons, injection fluids, electrical power or subsea tools. The paper will discuss the most important design considerations surrounding the subsea shuttle tanker.


Sign in / Sign up

Export Citation Format

Share Document