scholarly journals Wideband spectrum sensing based on modulated wideband converter with nested array

2020 ◽  
Author(s):  
Qiuyue Li ◽  
Zhi Li ◽  
Jian Li
2021 ◽  
Vol 38 (4) ◽  
pp. 1201-1208
Author(s):  
T V N L Aswini ◽  
Padma K Raju ◽  
Leela B Kumari

This paper reflects the problem of wideband spectrum recovery. The demand for spectrum usage is increasing exponentially as the wireless technologies rules the world. To meet these needs, Cognitive Radio is one of the emerging technologies, which intelligently allots the spectrum to the secondary users. Since the spectrum is wideband, the capability of spectrum sensing is improved by introducing sub-nyquist sampling under compressive sensing framework. In this paper, a sub-nyquist sampling technique of Modulated Wideband Converter (MWC) is used as it possesses m-parallel channels providing fast sensing and robust structure. A circulant matrix method is used to improve the hardware complexity of MWC. Also at the reconstruction of MWC, a fusion based recovery algorithm is proposed which became an added benefit for perfect recovery of the support. The results are compared with conventional MWC in terms of support recovery, mean square error and SNR gain. Simulations proved that the proposed algorithm performs superior at low as well as high SNR with increased gain.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1346
Author(s):  
Xinyu Xie ◽  
Zhuhua Hu ◽  
Min Chen ◽  
Yaochi Zhao ◽  
Yong Bai

Spectrum is a kind of non-reproducible scarce strategic resource. A secure wideband spectrum sensing technology provides the possibility for the next generation of ultra-dense, ultra-large-capacity communications to realize the shared utilization of spectrum resources. However, for the open collaborative sensing in cognitive radio networks, the collusion attacks of malicious users greatly affect the accuracy of the sensing results and the security of the entire network. To address this problem, this paper proposes a weighted fusion decision algorithm by using the blockchain technology. The proposed algorithm divides the single-node reputation into active reputation and passive reputation. Through the proposed token threshold concept, the active reputation is set to increase the malicious cost of the node; the passive reputation of the node is determined according to the historical data and recent performance of the blockchain. The final node weight is obtained by considering both kinds of reputation. The proposed scheme can build a trust-free platform for the cognitive radio collaborative networks. Compared with the traditional equal-gain combination algorithm and the centralized sensing algorithm based on the beta reputation system, the simulation results show that the proposed algorithm can obtain reliable sensing results with a lower number of assistants and sampling rate, and can effectively resist malicious users’ collusion attacks. Therefore, the security and the accuracy of cooperative spectrum sensing can be significantly improved in cognitive radio networks.


2021 ◽  
Vol 182 ◽  
pp. 132-139
Author(s):  
Marwa Mashhour ◽  
Aziza I. Hussein ◽  
Hussein Sh. Mogahed

Sign in / Sign up

Export Citation Format

Share Document