scholarly journals High precision positioning algorithm based on carrier phase and time of arrival

2021 ◽  
Author(s):  
Zhenyu Zhang ◽  
Shaoli Kang ◽  
Xiang Zhang
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zhengping Li ◽  
Chaoliang Qin ◽  
Hao Shi

This paper proposed a two-point coordinated positioning algorithm. Based on the assumption that the distance between two points was constant, a fusion algorithm was introduced into the positioning process to enhance the positioning accuracy. The simulation results showed that the proposed algorithm could reduce the RMS error to about 50% of the improved sinc interpolation-based positioning algorithm when the sampling frequency was 500 MHz and the interpolation number was 19.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 53
Author(s):  
Yangwei Lu ◽  
Shengyue Ji ◽  
Rui Tu ◽  
Duojie Weng ◽  
Xiaochun Lu ◽  
...  

The high precision positioning can be easily achieved by using real-time kinematic (RTK) and precise point positioning (PPP) or their augmented techniques, such as network RTK (NRTK) and PPP-RTK, even if they also have their own shortfalls. A reference station and datalink are required for RTK or NRTK. Though the PPP technique can provide high accuracy position data, it needs an initialisation time of 10–30 min. The time-relative positioning method estimates the difference between positions at two epochs by means of a single receiver, which can overcome these issues within short period to some degree. The positioning error significantly increases for long-period precise positioning as consequence of the variation of various errors in GNSS (Global Navigation Satellite System) measurements over time. Furthermore, the accuracy of traditional time-relative positioning is very sensitive to the initial positioning error. In order to overcome these issues, an improved time-relative positioning algorithm is proposed in this paper. The improved time-relative positioning method employs PPP model to estimate the parameters of current epoch including position vector, float ionosphere-free (IF) ambiguities, so that these estimated float IF ambiguities are used as a constraint of the base epoch. Thus, the position of the base epoch can be estimated by means of a robust Kalman filter, so that the position of the current epoch with reference to the base epoch can be obtained by differencing the position vectors between the base epoch and the current one. The numerical results obtained during static and dynamic tests show that the proposed positioning algorithm can achieve a positioning accuracy of a few centimetres in one hour. As expected, the positioning accuracy is highly improved by combining GPS, BeiDou and Galileo as a consequence of a higher amount of used satellites and a more uniform geometrical distribution of the satellites themselves. Furthermore, the positioning accuracy achieved by using the positioning algorithm here described is not affected by the initial positioning error, because there is no approximation similar to that of the traditional time-relative positioning. The improved time-relative positioning method can be used to provide long-period high precision positioning by using a single dual-frequency (L1/L2) satellite receiver.


2012 ◽  
Vol 47 (2) ◽  
pp. 35-46 ◽  
Author(s):  
Panithan Srinuandee ◽  
Chalermchon Satirapod ◽  
Clement Ogaja ◽  
Hung-Kyu Lee

Optimization of Satellite Combination in Kinematic Positioning Mode with the Aid of Genetic AlgorithmThe basis of high precision relative positioning is the use of carrier phase measurements. Data differencing techniques are one of the keys to achieving high precision positioning results as they can significantly reduce a variety of errors or biases in the observations and models. Since GPS observations are usually contaminated by many errors such as the atmospheric biases, the receiver clock bias, the satellite clock bias, and so on, it is impossible to model all systematic errors in the functional model. Although the data differencing techniques are widely used for constructing the functional model, some un-modeled systematic biases still remain in the GPS observations following such differencing. Another key to achieving high precision positioning results is to fix the initial carrier phase ambiguities to their theoretical integer values. To obtain a high percentage of successful ambiguity-fixed rates, noisy GPS satellites have to be identified and removed from the data processing step. This paper introduces a new method using genetic algorithm (GA) to optimize the best combination of GPS satellites which yields the highest number of successful ambiguity-fixed solutions in kinematic positioning mode. The results indicate that the use of GA can produce higher number of ambiguity-fixed solutions than the standard data processing technique.


Author(s):  
Zhengping Li ◽  
◽  
Chaoliang Qin ◽  
Yongmei Zhang ◽  
Li Ma ◽  
...  

2020 ◽  
Vol 1550 ◽  
pp. 022024
Author(s):  
Bo Zhou ◽  
Shouhua Wang ◽  
Siyu Feng ◽  
Donghai Tang ◽  
Chenghao Weng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document