rms error
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 59)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Donghao He ◽  
Tengfei Zhang ◽  
Xiaojing Liu

The combined fission matrix theory is a recently-developed hybrid neutron transport method. It features high efficiency, fidelity, and resolution whole-core transport calculation. The theory is based on the assumption that the fission matrix element ai,j is dominated by the property of the destination cell i. This assumption can be well explained in thermal reactors, and the combined fission matrix method has been validated in a series of thermal neutron system benchmarks. This work examines the feasibility of the combined fission matrix theory in fast reactors. The European Sodium Fast Reactor is used as the numerical benchmark. Compared to the Monte Carlo method, the combined fission matrix theory reports a 64 pcm keff difference and 8.3% 2D RMS error. The error is much larger than that in thermal reactors, and the correction ratio cannot significantly reduce the material discontinuity error in fast reactors. Overall, the combined fission matrix theory is more suited for thermal reactor transport calculations. Its application in fast reactors needs further developments.


2021 ◽  
Vol 13 (23) ◽  
pp. 4845
Author(s):  
Mingkui Wu ◽  
Shuai Luo ◽  
Wang Wang ◽  
Wanke Liu

Global navigation satellite system (GNSS)-based attitude determination has been widely applied in a variety of fields due to its high precision, no error accumulation, low power consumption, and low cost. Recently, the emergence of common-clock receivers and construction of GNSS systems have brought new opportunities for high-precision GNSS-based attitude determination. In this contribution, we focus on evaluating the performance of the BeiDou regional navigation satellite system (BDS-2)/BeiDou global navigation satellite system (BDS-3)/Global Positioning System (GPS)/Galileo navigation satellite system (Galileo) attitude determination based on the single-differenced (SD) model with a common-clock receiver. We first investigate the time-varying characteristics of BDS-2/BDS-3/GPS/Galileo line bias (LB) with two different types of common-clock receivers. The results have confirmed that both the phase and code LBs are relatively stable in the time domain once the receivers have started. However, the phase LB is expected to change to an arbitrary value after each restart of the common-clock receivers. For the first time, it is also found that the phase LBs of overlapping frequencies shared by different GNSS systems are identical. Then, we primarily evaluated the performance of BDS-2/BDS-3/GPS/Galileo precise relative positioning and attitude determination based on the SD model with a common-clock receiver, using a static dataset collected at Wuhan. Experimental results demonstrated that, compared with the double-differenced (DD) model, the SD model can deliver a comparable root–mean–square (RMS) error of yaw but a significantly smaller RMS error of pitch, whether for BDS-2, BDS-3, GPS, or Galileo alone or a combination of them. The improvements of pitch accuracy are approximately 20.8–47.5% and 40.7–57.5% with single- and dual-frequency observations, respectively. Additionally, BDS-3 can deliver relatively superior positioning and attitude accuracy with respect to GPS and Galileo, due to its better geometry. The three-dimensional positioning and attitude (including yaw and pitch) accuracy for both the DD and SD models can be remarkably improved by the BDS-2, BDS-3, GPS, and Galileo combination with respect to a single system alone.


2021 ◽  
Vol 32 (3) ◽  
pp. 13-29
Author(s):  
Adedibu Sunny Akingboye ◽  
◽  
Andy Anderson Bery ◽  
◽  

Geophysicists use electrical methods to investigate and characterise the earth’s subsurface geology. This study aims to evaluate the performance of copper and conventional stainless-steel electrodes in subsurface tomographic investigations using electrical resistivity tomography (ERT) and induced polarisation (IP) at two sites in Penang, Malaysia. Site 1 and Site 2 employed profile lengths of 200 m and 100 m, with electrodes spacing of 5.0 m and 2.5 m, respectively. In the results of the final data inversion, it was observed that the ERT and IP tomographic models of Site 1 have the best convergence limits with percentage relative differences (copper as reference model) ranging from –70% to 70%, while Site 2 recorded –8% to 8%. The electrodes performance evaluation showed that population root mean square (RMS) error and population mean absolute percentage error (MAPE) of data points between copper and stainless-steel electrodes yielded large values for Site 1 with values above 28% and that of Site 2 was less than 4%. Hence, copper (good electrical conductivity and non-polarisable) electrodes have improved the quality and quantity of infield data which give low values of population RMS error and population MAPE compared to conventional stainless-steel electrodes, especially for large unit electrode spacing surveys. Most notably, this work has contributed to the understanding of the capability of copper electrodes in providing precise and reliable inversion models for subsurface tomographic investigations in pre- and post-land uses (engineering work), hydrogeology/groundwater, environmental studies, etc.


2021 ◽  
Author(s):  
Xiutong Lin ◽  
Tao Sun ◽  
Xiao Liu ◽  
Guifang Zhang ◽  
Yong Yin

Abstract Background and purpose: The study evaluated the differences in leaf positioning deviations by the log files of three advanced accelerators with two delivery techniques, and established specific assessment parameters of leaf positioning deviations for different types of accelerators.Methods: A total of 300 treatment plans with 5 consecutive treatment log files were collected from the Trilogy, TrueBeam and Halcyon accelerators. 50 IMRT and 50 VMAT plans were selected randomly on each accelerator. The log files information was parsed by SunCheck software from Sun Nuclear Corporation. The maximum leaf RMS errors, 95th percentile errors and percentages of different leaf positioning errors were statistically analyzed. The correlations between these evaluation parameters and accelerator performance parameters (maximum leaf speed, mean leaf speed, gantry and arc angle) were analyzed.Results: The average maximum leaf RMS errors of the Trilogy in the IMRT and VMAT plans were 0.45±0.1mm and 0.80±0.07mm, respectively, which were higher than the TrueBeam's 0.03±0.01mm, 0.03±0.01 mm and the Halcyon's 0.06±0.01 mm, 0.07±0.01mm. Similar data results were shown in the 95th percentile error. The maximum leaf RMS errors were strongly correlated with the 95th percentile errors. The leaf positioning deviations in VMAT were higher than those in IMRT for all accelerators. In TrueBeam and Halcyon, leaf position errors above 1 mm were not found in IMRT and VMAT plans. The main influencing factor of leaf positioning deviation was the leaf speed, which has no correlation with gantry and arc angles.Conclusions: Compared with the quality assurance guidelines, the MLC positioning deviations tolerances of the three accelerators should be tightened. For both IMRT and VMAT techniques, the 95th percentile error and the maximum RMS error are suggested to be tightened to 1.5 mm and 1 mm for the Trilogy accelerator respectively. In TrueBeam and Halcyon accelerators, the 95th percentile error and maximum RMS error of 1 mm and 0.5 mm, respectively, are considered appropriate.


2021 ◽  
Vol 13 (19) ◽  
pp. 3996
Author(s):  
Rob Holman ◽  
Erwin W. J. Bergsma

This manuscript describes and tests a set of improvements to the cBathy algorithm, published in 2013 by Holman et al. [hereafter HPH13], for the estimation of bathymetry based on optical observations of propagating nearshore waves. Three versions are considered, the original HPH13 algorithm (now labeled V1.0), an intermediate version that has seen moderate use but limited testing (V1.2), and a substantially updated version (V2.0). Important improvements from V1.0 include a new deep-water weighting scheme, removal of a spurious variable in the nonlinear fitting, an adaptive scheme for determining the optimum tile size based on the approximate wavelength, and a much-improved search seed algorithm. While V1.2 was tested and results listed, the primary interest is in comparing V1.0, the original code, with the new version V2.0. The three versions were tested against an updated dataset of 39 ground-truth surveys collected from 2015 to 2019 at the Field Research Facility in Duck, NC. In all, 624 cBathy collections were processed spanning a four-day period up to and including each survey date. Both the unfiltered phase 2 and the Kalman-filtered phase 3 bathymetry estimates were tested. For the Kalman-filtered estimates, only the estimate from mid-afternoon on the survey date was used for statistical measures. Of those 39 Kalman products, the bias, rms error, and 95% exceedance for V1.0 were 0.15, 0.47, and 0.96 m, respectively, while for V2.0, they were 0.08, 0.38, and 0.78 m. The mean observed coverage, the percentage of successful estimate locations in the map, were 99.1% for V1.0 and 99.9% for V2.0. Phase 2 (unfiltered) bathymetry estimates were also compared to ground truth for the 624 available data runs. The mean bias, rms error, and 95% exceedance statistics for V1.0 were 0.19, 0.64, and 1.27 m, respectively, and for V2.0 were 0.16, 0.56, and 1.19 m, an improvement in all cases. The coverage also increased from 78.8% for V1.0 to 84.7% for V2.0, about a 27% reduction in the number of failed estimates. The largest errors were associated with both large waves and poor imaging conditions such as fog, rain, or darkness that greatly reduced the percentage of successful coverage. As a practical mitigation of large errors, data runs for which the significant wave height was greater than 1.2 m or the coverage was less than 50% were omitted from the analysis, reducing the number of runs from 624 to 563. For this reduced dataset, the bias, rms error, and 95% exceedance errors for V1.0 were 0.15, 0.58, and 1.16 m and for V2.0 were 0.09, 0.41, and 0.85 m, respectively. Successful coverage for V1.0 was 82.8%, while for V2.0, it was 90.0%, a roughly 42% reduction in the number of failed estimates. Performance for V2.0 individual (non-filtered) estimates is slightly better than the Kalman results in the original HPH13 paper, and it is recommended that version 2.0 becomes the new standard algorithm.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Chung Han Lim

Topographic surveying has been an important companion to the civil engineer in the development of human civilization since ancient history. It is used to map terrestrial features on the ground along with its contour heights. Application of this can be seen in the establishing land boundaries and setting out construction projects. Conventional methods of surveying range from ground field methods such as the use of total station to aerial surveys such as photogrammetry or LiDAR. This study looks to assess the feasibility of aerial photogrammetry using UAVs as a replacement to the conventional EDM survey using total stations. This objective was achieved by carrying out both photogrammetric and EDM surveys on a 350m long stretch of highway. The resulting survey data were processed to produce two comparative TIN surfaces of the highway which were then superimposed together and compared for accuracy. It could be observed that on plan view, both surfaces were quite closely matched with a maximum difference of less than 0.4m and a low standard deviation. In elevation view, however, the differences were larger with maximums of 5.0m, accompanied by large standard deviations. RMS error analysis carried out also correlate with the findings.


2021 ◽  
Vol 42 (II) ◽  
pp. 49-56
Author(s):  
F. ZABLOTSKYI ◽  
◽  
B. DZHUMAN ◽  

Nowadays there is a need to modernize the high system of Ukraine, which requires its integration in the European Vertical Reference System EVRS. In this regard there is also a need to build a regional model of the geoid on the territory of our country, which would be well consistent with the model of the European geoid EGG2015. To obtain the optimal model, it is necessary to use both gravimetric and geometric data. In this case, the model is called gravimetric-geometric. This approach is used both when building a model of the European geoid and when building geoid models on the territory of different European countries. Aim. The purpose of this work is to build a regional geometric STHA-model of the geoid on the Lviv region area and assess its accuracy. In the future it is planned to build a gravimetric STHA-model of the geoid in the same area and compare the results. Methods. To build a geometric STHA-model of the geoid on the Lviv region area, the heights of the geometric geoid, obtained from GNSS-observations at the points of SGN of I, II and III classes, were used. RMS error of determination of geodetic heights , obtained from GNSS leveling in static mode, did not exceed 15 mm. 205 values of the calculated heights of the geoid were used to build the geoid model. 8 values were not involved in the construction of the model, because they were used for an independent assessment of model accuracy. Results. The regional model of geoid within the “Remove–Compute–Restore” procedure with introduction of regularization parameter is obteined. RMS error of the obtained model, calculated on the basis of the data used in its construction, is 12 mm, and on other independent data is 25 mm. Scientific novelty and practical significance. For the first time STHA-functions were tested to build a regional geoid model. The geometric model of the geoid on the Lviv region are is calculated and the accuracy of the obtained model is estimated on the basis of dependent and independent data. The RMS error of the obtained model was about 2 cm, which corresponds to the accuracy of GNSS-measurements. The obtained model can be used as a transformation field on the Lviv region area.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5542
Author(s):  
Alejandro Grande-Fidalgo ◽  
Javier Calpe ◽  
Mónica Redón ◽  
Carlos Millán-Navarro ◽  
Emilio Soria-Olivas

One of the most powerful techniques to diagnose cardiovascular diseases is to analyze the electrocardiogram (ECG). To increase diagnostic sensitivity, the ECG might need to be acquired using an ambulatory system, as symptoms may occur during a patient’s daily life. In this paper, we propose using an ambulatory ECG (aECG) recording device with a low number of leads and then estimating the views that would have been obtained with a standard ECG location, reconstructing the complete Standard 12-Lead System, the most widely used system for diagnosis by cardiologists. Four approaches have been explored, including Linear Regression with ECG segmentation and Artificial Neural Networks (ANN). The best reconstruction algorithm is based on ANN, which reconstructs the actual ECG signal with high precision, as the results bring a high accuracy (RMS Error < 13 μV and CC > 99.7%) for the set of patients analyzed in this paper. This study supports the hypothesis that it is possible to reconstruct the Standard 12-Lead System using an aECG recording device with less leads.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5299
Author(s):  
DongWoo Nam ◽  
Bummo Ahn

Stroke causes neurological pathologies, including gait pathologies, which are diagnosed by gait analysis. However, existing gait analysis devices are difficult to use in situ or are disrupted by external conditions. To overcome these drawbacks, a flexible capacitance sensor was developed in this study. To date, a performance comparison of flexible sensors with different dimensions has not been carried out. The aim of this study was to provide optimized sensor dimension information for gait analysis. To accomplish this, sensors with seven different dimensions were fabricated. The dimensions of the sensors were based on the average body size and movement range of 20- to 59-year-old adults. The sensors were characterized by 100 oscillations. The minimum hysteresis error was 8%. After that, four subjects were equipped with the sensor and walked on a treadmill at a speed of 3.6 km/h. All walking processes were filmed at 50 fps and analyzed in Kinovea. The RMS error was calculated using the same frame rate of the video and the sampling rate of the signal from the sensor. The smallest RMS error between the sensor data and the ankle angle was 3.13° using the 49 × 8 mm sensor. In this study, we confirm the dimensions of the sensor with the highest gait analysis accuracy; therefore, the results can be used to make decisions regarding sensor dimensions.


Author(s):  
Mohammad Mehdi Alemi ◽  
Katelyn A. Burkhart ◽  
Andrew C. Lynch ◽  
Brett T. Allaire ◽  
Seyed Javad Mousavi ◽  
...  

Motion analysis is increasingly applied to spine musculoskeletal models using kinematic constraints to estimate individual intervertebral joint movements, which cannot be directly measured from the skin surface markers. Traditionally, kinematic constraints have allowed a single spinal degree of freedom (DOF) in each direction, and there has been little examination of how different kinematic constraints affect evaluations of spine motion. Thus, the objective of this study was to evaluate the performance of different kinematic constraints for inverse kinematics analysis. We collected motion analysis marker data in seven healthy participants (4F, 3M, aged 27–67) during flexion–extension, lateral bending, and axial rotation tasks. Inverse kinematics analyses were performed on subject-specific models with 17 thoracolumbar joints allowing 51 rotational DOF (51DOF) and corresponding models including seven sets of kinematic constraints that limited spine motion from 3 to 9DOF. Outcomes included: (1) root mean square (RMS) error of spine markers (measured vs. model); (2) lag-one autocorrelation coefficients to assess smoothness of angular motions; (3) maximum range of motion (ROM) of intervertebral joints in three directions of motion (FE, LB, AR) to assess whether they are physiologically reasonable; and (4) segmental spine angles in static ROM trials. We found that RMS error of spine markers was higher with constraints than without (p &lt; 0.0001) but did not notably improve kinematic constraints above 6DOF. Compared to segmental angles calculated directly from spine markers, models with kinematic constraints had moderate to good intraclass correlation coefficients (ICCs) for flexion–extension and lateral bending, though weak to moderate ICCs for axial rotation. Adding more DOF to kinematic constraints did not improve performance in matching segmental angles. Kinematic constraints with 4–6DOF produced similar levels of smoothness across all tasks and generally improved smoothness compared to 9DOF or unconstrained (51DOF) models. Our results also revealed that the maximum joint ROMs predicted using 4–6DOF constraints were largely within physiologically acceptable ranges throughout the spine and in all directions of motions. We conclude that a kinematic constraint with 5DOF can produce smooth spine motions with physiologically reasonable joint ROMs and relatively low marker error.


Sign in / Sign up

Export Citation Format

Share Document