scholarly journals A Novel High-precision Single-frequency BeiDou High Kinematic Positioning Algorithm with Pseudo Range and Carrier Phase

Author(s):  
Jian-xi YANG ◽  
Ya-ping CHI ◽  
Chu-ping DAI ◽  
Ping XU
2019 ◽  
Vol 7 (5) ◽  
pp. 137 ◽  
Author(s):  
Giovanni Pugliano ◽  
Umberto Robustelli ◽  
Diana Di Luccio ◽  
Luigi Mucerino ◽  
Guido Benassai ◽  
...  

Remote video imagery is widely used for shoreline detection, which plays a fundamental role in geomorphological studies and in risk assessment, but, up to now, few measurements of accuracy have been undertaken. In this paper, the comparison of video-based and GPS-derived shoreline measurements was performed on a sandy micro-tidal beach located in Italy (central Tyrrhenian Sea). The GPS survey was performed using a single frequency, code, and carrier phase receiver as a rover. Raw measurements have been post-processed by using a carrier-based positioning algorithm. The comparison between video camera and DGPS coastline has been carried out on the whole beach, measuring the error as the deviation from the DGPS line computed along the normal to the DGPS itself. The deviations between the two dataset were examined in order to establish possible spatial dependence on video camera point of view and on beach slope in the intertidal zone. The results revealed that, generally, the error increased with the distance from the acquisition system and with the wash up length (inversely proportional to the beach slope).


2009 ◽  
Vol 62 (4) ◽  
pp. 687-697 ◽  
Author(s):  
R. M. Alkan ◽  
M. H. Saka

Low-cost OEM GPS receivers with the capability of tracking the carrier phase are now used for many applications in the navigation and tracking arena. These receivers provide flexibility in applying carrier smoothing algorithms to improve the pseudorange positioning accuracy and even perform carrier-phase differential positioning. In this study, the performance of a low-cost single-frequency OEM GPS receiver for high-accuracy kinematic positioning in marine applications is investigated. As a first step, a set of zero baseline tests were carried out to evaluate the performance of the GPS receivers. In the second stage, a kinematic test was conducted at the Halic (Golden Horn), Istanbul. The results show that kinematic positioning with centimetre level accuracy can be achieved by the low-cost OEM GPS receiver in differential mode, suggesting its use in a variety of kinematic applications. The use of such a system could considerably reduce the cost of the GPS receiver and the total project costs of many applications.


2012 ◽  
Vol 47 (2) ◽  
pp. 35-46 ◽  
Author(s):  
Panithan Srinuandee ◽  
Chalermchon Satirapod ◽  
Clement Ogaja ◽  
Hung-Kyu Lee

Optimization of Satellite Combination in Kinematic Positioning Mode with the Aid of Genetic AlgorithmThe basis of high precision relative positioning is the use of carrier phase measurements. Data differencing techniques are one of the keys to achieving high precision positioning results as they can significantly reduce a variety of errors or biases in the observations and models. Since GPS observations are usually contaminated by many errors such as the atmospheric biases, the receiver clock bias, the satellite clock bias, and so on, it is impossible to model all systematic errors in the functional model. Although the data differencing techniques are widely used for constructing the functional model, some un-modeled systematic biases still remain in the GPS observations following such differencing. Another key to achieving high precision positioning results is to fix the initial carrier phase ambiguities to their theoretical integer values. To obtain a high percentage of successful ambiguity-fixed rates, noisy GPS satellites have to be identified and removed from the data processing step. This paper introduces a new method using genetic algorithm (GA) to optimize the best combination of GPS satellites which yields the highest number of successful ambiguity-fixed solutions in kinematic positioning mode. The results indicate that the use of GA can produce higher number of ambiguity-fixed solutions than the standard data processing technique.


2020 ◽  
pp. 1-13
Author(s):  
Jinhai Liu ◽  
Rui Tu ◽  
Rui Zhang ◽  
Xiaodong Huang ◽  
Pengfei Zhang ◽  
...  

This study introduces a new real-time kinematic (RTK) positioning method which is suitable for baselines of different lengths. The method merges carrier-phase wide-lane, and ionosphere-free observation combinations (LWLC) instead of using pseudo-range, and carrier-phase ionosphere-free combination (PCLC), or single-frequency pseudo-range and phase combination (P1L1). In a first step, the double-differenced wide-lane ambiguities were calculated and fixed using the pseudo-range and carrier-phase wide-lane combination observations. Once the double-differenced wide-lane integer ambiguities were known, the wide-lane combined observations were regarded as accurate pseudo-range observations. Subsequently, the carrier-phase wide-lane, and ionosphere-free combined observations were used to fix the double-differenced carrier-phase integer ambiguities, achieving the final RTK positioning. The RTK positioning analysis was performed for short, medium, and long baselines, using the P1L1, PCLC, and LWLC methods, respectively. For a short baseline, the LWLC method demonstrated positioning accuracy similar to the P1L1 method, and performed better than the PCLC method. For medium and long baselines, the positioning accuracy of the LWLC method was slightly higher than those of the PCLC and P1L1 methods. In conclusion, the LWLC method provided high-precision RTK positioning results for baselines with different lengths, as it used high-precision carrier-phase observations with fixed ambiguities instead of low-precision pseudo-range observations.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3254 ◽  
Author(s):  
Jungbeom Kim ◽  
Minhuck Park ◽  
Yonghwan Bae ◽  
O-Jong Kim ◽  
Donguk Kim ◽  
...  

In this study, we developed a low-cost, high-precision vehicle navigation system for deep urban multipath environments using time-differenced carrier phase (TDCP) measurements. Although many studies are being conducted to navigate autonomous vehicles using the global positioning system (GPS), it is difficult to obtain accurate navigation solutions due to multipath errors in urban environments. Low-cost GPS receivers that determine the solution based on pseudorange measurements are vulnerable to multipath errors. We used carrier phase measurements that are more robust for multipath errors. Without correction information from reference stations, the limited information of a low-cost, single-frequency receiver makes it difficult to quickly and accurately determine integer ambiguity of carrier phase measurements. We used TDCP measurements to eliminate the need to determine integer ambiguity that is time-invariant and we combined TDCP-based GPS with an inertial navigation system to overcome deep urban multipath environments. Furthermore, we considered a cycle slip algorithm for its accuracy and a multi-constellation navigation system for its availability. The results of dynamic field tests in a deep urban area indicated that it could achieve horizontal accuracy of at the submeter level.


2021 ◽  
Vol 13 (9) ◽  
pp. 1621
Author(s):  
Duojie Weng ◽  
Shengyue Ji ◽  
Yangwei Lu ◽  
Wu Chen ◽  
Zhihua Li

The differential global navigation satellite system (DGNSS) is an enhancement system that is widely used to improve the accuracy of single-frequency receivers. However, distance-dependent errors are not considered in conventional DGNSS, and DGNSS accuracy decreases when baseline length increases. In network real-time kinematic (RTK) positioning, distance-dependent errors are accurately modelled to enable ambiguity resolution on the user side, and standard Radio Technical Commission for Maritime Services (RTCM) formats have also been developed to describe the spatial characteristics of distance-dependent errors. However, the network RTK service was mainly developed for carrier-phase measurements on professional user receivers. The purpose of this study was to modify the local-area DGNSS through the use of network RTK corrections. Distance-dependent errors can be reduced, and accuracy for a longer baseline length can be improved. The results in the low-latitude areas showed that the accuracy of the modified DGNSS could be improved by more than 50% for a 17.9 km baseline during solar active years. The method in this paper extends the use of available network RTK corrections with high accuracy to normal local-area DGNSS applications.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Yang Zhang ◽  
Lingling Xu ◽  
Yu Su ◽  
Wenfang Jing ◽  
Xiaochun Lu

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2189 ◽  
Author(s):  
Qiong Wu ◽  
Mengfei Sun ◽  
Changjie Zhou ◽  
Peng Zhang

The update of the Android system and the emergence of the dual-frequency GNSS chips enable smartphones to acquire dual-frequency GNSS observations. In this paper, the GPS L1/L5 and Galileo E1/E5a dual-frequency PPP (precise point positioning) algorithm based on RTKLIB and GAMP was applied to analyze the positioning performance of the Xiaomi Mi 8 dual-frequency smartphone in static and kinematic modes. The results showed that in the static mode, the RMS position errors of the dual-frequency smartphone PPP solutions in the E, N, and U directions were 21.8 cm, 4.1 cm, and 11.0 cm, respectively, after convergence to 1 m within 102 min. The PPP of dual-frequency smartphone showed similar accuracy with geodetic receiver in single-frequency mode, while geodetic receiver in dual-frequency mode has higher accuracy. In the kinematic mode, the positioning track of the smartphone dual-frequency data had severe fluctuations, the positioning tracks derived from the smartphone and the geodetic receiver showed approximately difference of 3–5 m.


Sign in / Sign up

Export Citation Format

Share Document