kinematic positioning
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 32)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 10 (10) ◽  
pp. 699
Author(s):  
Zun Niu ◽  
Fugui Guo ◽  
Qiangqiang Shuai ◽  
Guangchen Li ◽  
Bocheng Zhu

The real-time kinematic positioning technique (RTK) and visual–inertial odometry (VIO) are both promising positioning technologies. However, RTK degrades in GNSS-hostile areas, where global navigation satellite system (GNSS) signals are reflected and blocked, while VIO is affected by long-term drift. The integration of RTK and VIO can improve the accuracy and robustness of positioning. In recent years, smartphones equipped with multiple sensors have become commodities and can provide measurements for integrating RTK and VIO. This paper verifies the feasibility of integrating RTK and VIO using smartphones, and we propose an improved algorithm to integrate RTK and VIO with better performance. We began by developing an Android smartphone application for data collection and then wrote a Python program to convert the data to a robot operating system (ROS) bag. Next, we established two ROS nodes to calculate the RTK results and accomplish the integration. Finally, we conducted experiments in urban areas to assess the integration of RTK and VIO based on smartphones. The results demonstrate that the integration improves the accuracy and robustness of positioning and that our improved algorithm reduces altitude deviation. Our work can aid navigation and positioning research, which is the reason why we open source the majority of the codes at our GitHub.


2021 ◽  
pp. 1-14
Author(s):  
Haiyang Li ◽  
Guigen Nie ◽  
Jing Wang ◽  
Shuguang Wu ◽  
Yuefan He

Abstract Recent progress in using real-time kinematic (RTK) positioning has motivated the exploration of its application due to its high accuracy and efficiency. However, poorly-observed satellite data will cause unfixed ambiguities and markedly biased solutions. A novel partial ambiguity resolution method, named the irrespective of integer ambiguity resolution (IIAR) model, is proposed and applied to improve the reliability of ambiguity resolution. The proposed method contains initial ambiguity resolution and irrespective of integer ambiguity processes. The initial ambiguity resolution process applies an iterative partial ambiguity resolution method to obtain an approximate solution. The irrespective of integer ambiguity process transforms the approximate solution to a high-precision solution. Experiments show that the approximate solution is unreliable when the initial ambiguity resolution process has small redundancy, and the proposed method can obtain better results for those cases. The IIAR method showed about a 40% improvement of multi-GNSS ambiguity success rate and about a 25% improvement of standard deviation. Therefore, these results show that the proposed IIAR method can improve the results of multi-GNSS RTK positioning significantly.


Author(s):  
Lucjan Setlak ◽  
Rafał Kowalik

The article presents results of verification of the kinematic measurements usefulness for precise real-time positioning RTK in the local reference system. These measurements allow for continuous RTK measurements in the event of temporary interruptions in radio or internet connections, which are the main reason for interruptions in RTK kinematic measurements and cause a decrease in the reliability and efficiency of this positioning method. Short interruptions communication are allowed during the loss of the key correction stream from the local RTK support network, so the global corrections obtained from the geostationary satellite are used. The aim of the article was to analyze the accuracy of measuring the position of moving objects. Practical conclusions were formulated according to the research subject, the presented mathematical models, the experiment and the analysis of the obtained results.


Author(s):  
Tim Rooker ◽  
Graeme Potts ◽  
Keith Worden ◽  
Nikolaos Dervilis ◽  
Jon Stammers

Maintaining minimal levels of geometric error in the finished workpiece is of increasing importance in the modern production environment; there is considerable research on the identification, verification and calibration of machine tool kinematic error, and the development of Postprocessor implementations to generate NC-code optimised for machining accuracy. The choice of multi-axis positioning function at the controller, however, is an often-overlooked potential source of kinematic error which can be responsible for costly mistakes in the production environment. This paper presents an investigation into how mis-management of the positional error parameters that define the rotary-axes’ pivot point can lead to unintended variations in multi-axis positioning. Four approaches for kinematic positioning on a Fanuc-based controller are considered, which reference two separate parameter locations to define the pivot point – managing the kinematics within the Postprocessor itself, full five-axis positioning with a fixture offset, full five-axis with rotation tool centre point control and 3+2-axis with a tilted workplane. Error vectors across four sets of rotary-axis indexations are simulated based on the theoretical kinematic model, to highlight the expected differences in geometric error attributable to mismatched pivot point parameters. Finally, the simulation results are verified experimentally, demonstrating the importance of maintaining a consistent approach in both programming and operation environments.


2021 ◽  
Vol 13 (4) ◽  
pp. 823
Author(s):  
Lin Zhao ◽  
Jiachang Jiang ◽  
Liang Li ◽  
Chun Jia ◽  
Jianhua Cheng

Since the traditional real-time kinematic positioning method is limited by the reduced satellite visibility from the deprived navigational environments, we, therefore, propose an improved RTK method with multiple rover receivers sharing a common clock. The proposed method can enhance observational redundancy by blending the observations from each rover receiver together so that the model strength will be improved. Integer ambiguity resolution of the proposed method is challenged in the presence of several inter-receiver biases (IRB). The IRB including inter-receiver code bias (IRCB) and inter-receiver phase bias (IRPB) is calibrated by the pre-estimation method because of their temporal stability. Multiple BeiDou Navigation Satellite System (BDS) dual-frequency datasets are collected to test the proposed method. The experimental results have shown that the IRCB and IRPB under the common clock mode are sufficiently stable for the ambiguity resolution. Compared with the traditional method, the ambiguity resolution success rate and positioning accuracy of the proposed method can be improved by 19.5% and 46.4% in the restricted satellite visibility environments.


Author(s):  
Abdelhamid Tayebi ◽  
◽  
Josefa G髆ez ◽  
Mari醤 Fern醤dez ◽  
Francisco S醗z de Adana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document