A new near field radar target and JEM modeling and implementation of radar target HWIL simulation system

2009 ◽  
Author(s):  
Yuanchun Fei ◽  
Qi Zhao ◽  
Ning Chen
2014 ◽  
Vol 971-973 ◽  
pp. 1726-1729
Author(s):  
Ying Liu ◽  
Dian Ren Chen ◽  
Lei Chen

A radar target simulation system based on DRFM is designed in this paper ,in this system, the radar signal that is amplified and conversioned by the receive analog circuits is directly sampled by the ADC of DRFM, then the sampled data is stored in QDR2 SRAM array. When need to generate radar target simulation signal, the radar signal data is read from the QDR2 SRAM array and synthesis radar target simulation signal with the target characteristic parameters provided by the host computer. It can be widely used in various radar simulator occasions.


Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


Sign in / Sign up

Export Citation Format

Share Document