A dual-lead fusion detection algorithm of QRS

Author(s):  
Jian Liu ◽  
Xin Ji ◽  
Xinxin Tan ◽  
Ci Huang
2018 ◽  
Vol 189 ◽  
pp. 04006
Author(s):  
Nan Wang ◽  
Yunshan Xu ◽  
Haibao Xia ◽  
Jundi Wang

In this paper, a fusion detection algorithm that focuses on decentralized CFAR (Constant False Alarm Rate) signal detection problem without prior information is proposed. In the algorithm, the threshold and test statistic of the detection fusion algorithm derive from the conventional CFAR detection method. At last a framework for decentralized CFAR signal detection is designed corresponding to the fusion algorithm. Simulation results illustrate that an almost optimal detection performance is obtained by the proposed algorithm.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Meiman Li ◽  
Wenfu Xie

For the surveillance video images captured by monocular camera, this paper proposes a method combining foreground detection and deep learning to detect moving pedestrians, making full use of the invariable background of video image. Firstly, the motion region is extracted by the method of interframe difference and background difference. Then, the normalized motion region extracts the feature vectors based on the improved YOLOv3 tiny network. Finally, the trained linear support vector machine is used for pedestrian detection, and the performance of the fusion detection algorithm on caviar dataset is given, which proves the effectiveness of the proposed fusion detection algorithm. Experimental results show that the proposed method not only improves the practical application of pedestrian rerecognition but also reduces the detection range, computational complexity, and false detection rate compared with sliding window method.


2019 ◽  
Vol 28 (3) ◽  
pp. 1257-1267 ◽  
Author(s):  
Priya Kucheria ◽  
McKay Moore Sohlberg ◽  
Jason Prideaux ◽  
Stephen Fickas

PurposeAn important predictor of postsecondary academic success is an individual's reading comprehension skills. Postsecondary readers apply a wide range of behavioral strategies to process text for learning purposes. Currently, no tools exist to detect a reader's use of strategies. The primary aim of this study was to develop Read, Understand, Learn, & Excel, an automated tool designed to detect reading strategy use and explore its accuracy in detecting strategies when students read digital, expository text.MethodAn iterative design was used to develop the computer algorithm for detecting 9 reading strategies. Twelve undergraduate students read 2 expository texts that were equated for length and complexity. A human observer documented the strategies employed by each reader, whereas the computer used digital sequences to detect the same strategies. Data were then coded and analyzed to determine agreement between the 2 sources of strategy detection (i.e., the computer and the observer).ResultsAgreement between the computer- and human-coded strategies was 75% or higher for 6 out of the 9 strategies. Only 3 out of the 9 strategies–previewing content, evaluating amount of remaining text, and periodic review and/or iterative summarizing–had less than 60% agreement.ConclusionRead, Understand, Learn, & Excel provides proof of concept that a reader's approach to engaging with academic text can be objectively and automatically captured. Clinical implications and suggestions to improve the sensitivity of the code are discussed.Supplemental Materialhttps://doi.org/10.23641/asha.8204786


Sign in / Sign up

Export Citation Format

Share Document