Signal-to-Noise Ratio Enhancement of High Frequency Ground Wave Radar Based on a Metamaterial-Based Transition Structure

Author(s):  
Liang Yu Ou Yang ◽  
Shih Yuan Chen

In recent communication technologies, very high sampling rates are required for rf signals particularly for signals coming under ultra high frequency (UHF), super high frequency (SHF) and extremely high frequency (EHF) ranges. The applications include global positioning system (GPS), satellite communication, radar, radio astronomy, 5G mobile phones etc. Such high sampling rates can be accomplished with time-interleaved analog to digital converters (TIADCs). However, sampling time offsets existing in TIADCs produce non-uniform samples. This poses a drawback in the reconstruction of the signal. The current paper addresses this drawback and offers a solution for improved signal reconstruction by estimation and correction of the offsets. A modified differential evolution (MDE) algorithm, which is an optimization algorithm, is used for estimating the sampling time offsets and the estimated offsets are used for correction. The estimation algorithm is implemented on an FPGA board and correction is implemented using MATLAB. The power consumption of FPGA for implementation is 57mW. IO utilization is 27% for 4-channel TIADCs and 13% for 2-channel TIADCs. The algorithm estimated the sampling time offsets precisely. For estimation the algorithm uses a sinusoidal signal as a test signal. Correction is performed with sinusoidal and speech signals as inputs for TIADCs. Performance metrics used for evaluating the algorithm are SNR (signal to noise ratio), SNDR (signal to noise and distortion ratio), SFDR (spurious-free dynamic range) and PSNR (peak signal to noise ratio). A noteworthy improvement is observed in the above mentioned parameters. Results are compared with the existing state of the art algorithms and superiority of the proposed algorithm is verified.


2021 ◽  
Author(s):  
Xuegang Su

We are investigating the feasibility of binary coded excitation methods using Golay code pairs for high frequency ultrasound imaging as a way to increase the signal to noise ratio. I present some theoretical models used to simulate the coded excitation method and results generated from the models. A new coded excitation high frequency ultrasound prototype system was built to verify the simulation results. Both the simulation and the experimental results show that binary coded excitation can improve the signal to noise ratio in high frequency ultrasound backscatter signals. These results are confirmed in phantoms and excised bovine liver. If just white noise is considered, the encoding gain is 15dB for a Golay pair of length 4. We find the system to be very sensitive to motion (i.e. phase shift) and frequency dependent (FD) attenuation, creating sidelobes and degrading axial resolution and encoding gain. Methods to address these issues are discussed.


1991 ◽  
Vol 131 ◽  
pp. 15-25
Author(s):  
J. Delannoy

AbstractThe conceptual guidelines in designing mm radio-telescope antennas are enlightened by some recent progress in their mechanical construction, and opto-radio-geometrical adjustment. This paper reviews concepts, illustrated in many existing solutions, including the new “phaseretrieval” holography for single dish adjustment (D.Morris, IRAM, 1982): 2 amplitude only maps at focus and out of focus, with enough dynamic range and signal to noise ratio, give surface errors within hours.


Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 660-669 ◽  
Author(s):  
Richard D. Rechtien ◽  
K. L. Hambacker ◽  
R. F. Ballard

For tomographic investigations of shallow subsurface features of limited lateral extent, a high‐frequency, low‐cost borehole seismic source would be highly desirable, particularly for investigators with limited budgets. We constructed a simple, arc‐discharge seismic source from off‐the‐shelf items. This source consists of a salt water filled bottle containing exposed conductors of a coaxial cable, across which 100 to 300 joules of electrical power were discharged. This source produced a seismic pulse with a dominant frequency in the neighborhood of 1.5 kHz and a half‐power bandwidth in excess of 1 kHz. Repeatability of seismic signatures in a variety of environmental settings was excellent. Sufficient power was generated to observe seismic signals with at least a 35 dB signal‐to‐noise ratio at horizontal borehole separations of 100 m. For a borehole separation of 33.2 m, signals with at least a 35 dB signal‐to‐noise ratio were observed at angular ranges in the vertical plane to 68 degrees. The hydrostatic head limit for this source was determined to be approximately 430 m.


2020 ◽  
Vol 13 (7) ◽  
pp. 3957-3975
Author(s):  
Kukka-Maaria Kohonen ◽  
Pasi Kolari ◽  
Linda M. J. Kooijmans ◽  
Huilin Chen ◽  
Ulli Seibt ◽  
...  

Abstract. Carbonyl sulfide (COS) flux measurements with the eddy covariance (EC) technique are becoming popular for estimating gross primary productivity. To compare COS flux measurements across sites, we need standardized protocols for data processing. In this study, we analyze how various data processing steps affect the calculated COS flux and how they differ from carbon dioxide (CO2) flux processing steps, and we provide a method for gap-filling COS fluxes. Different methods for determining the time lag between COS mixing ratio and the vertical wind velocity (w) resulted in a maximum of 15.9 % difference in the median COS flux over the whole measurement period. Due to limited COS measurement precision, small COS fluxes (below approximately 3 pmol m−2 s−1) could not be detected when the time lag was determined from maximizing the covariance between COS and w. The difference between two high-frequency spectral corrections was 2.7 % in COS flux calculations, whereas omitting the high-frequency spectral correction resulted in a 14.2 % lower median flux, and different detrending methods caused a spread of 6.2 %. Relative total uncertainty was more than 5 times higher for low COS fluxes (lower than ±3 pmol m−2 s−1) than for low CO2 fluxes (lower than ±1.5 µmol m−2 s−1), indicating a low signal-to-noise ratio of COS fluxes. Due to similarities in ecosystem COS and CO2 exchange, we recommend applying storage change flux correction and friction velocity filtering as usual in EC flux processing, but due to the low signal-to-noise ratio of COS fluxes, we recommend using CO2 data for time lag and high-frequency corrections of COS fluxes due to the higher signal-to-noise ratio of CO2 measurements.


2021 ◽  
Author(s):  
Xuegang Su

We are investigating the feasibility of binary coded excitation methods using Golay code pairs for high frequency ultrasound imaging as a way to increase the signal to noise ratio. I present some theoretical models used to simulate the coded excitation method and results generated from the models. A new coded excitation high frequency ultrasound prototype system was built to verify the simulation results. Both the simulation and the experimental results show that binary coded excitation can improve the signal to noise ratio in high frequency ultrasound backscatter signals. These results are confirmed in phantoms and excised bovine liver. If just white noise is considered, the encoding gain is 15dB for a Golay pair of length 4. We find the system to be very sensitive to motion (i.e. phase shift) and frequency dependent (FD) attenuation, creating sidelobes and degrading axial resolution and encoding gain. Methods to address these issues are discussed.


Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1621-1634 ◽  
Author(s):  
Nikita Afonin ◽  
Elena Kozlovskaya ◽  
Jouni Nevalainen ◽  
Janne Narkilahti

Abstract. Studying the uppermost structure of the subsurface is a necessary part of solving many practical problems (exploration of minerals, groundwater studies, geoengineering, etc.). The practical application of active seismic methods for these purposes is not always possible for different reasons, such as logistical difficulties, high cost of work, and a high level of seismic and acoustic noise. That is why developing and improving passive seismic methods is one of the important problems in applied geophysics. In our study, we describe a way of improving the quality of empirical Green's functions (EGFs), evaluated from high-frequency ambient seismic noise, by using the advanced technique of cross-correlation function stacking in the time domain (in this paper we use term “high-frequency” for frequencies higher than 1 Hz). The technique is based on the global optimization algorithm, in which the optimized objective function is a signal-to-noise ratio of an EGF, retrieved at each iteration. In comparison to existing techniques, based, for example, on weight stacking of cross-correlation functions, our technique makes it possible to significantly increase the signal-to-noise ratio and, therefore, the quality of the EGFs. The technique has been tested with the field data acquired in an area with a high level of industrial noise (Pyhäsalmi Mine, Finland) and in an area with a low level of anthropogenic noise (Kuusamo Greenstone Belt, Finland). The results show that the proposed technique can be used for the extraction of EGFs from high-frequency seismic noise in practical problems of mapping of the shallow subsurface, both in areas with high and low levels of high-frequency seismic noise.


Sign in / Sign up

Export Citation Format

Share Document