coded excitation
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 29)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 63 (12) ◽  
pp. 712-720
Author(s):  
S Jayakrishnan ◽  
N Suresh ◽  
D Koodalil ◽  
K Balasubramaniam

High-power ultrasonic non-destructive evaluation (NDE) poses significant threats to intrinsic safety. It may lead to hazards in critical industrial applications, especially in oil & gas refineries, high-energy material technologies and the aerospace and aviation industries. Typically, industries employ various certifications and undertake several safety protocols to suppress the likelihood of industrial hazards. In order to satisfy safety standards for operating high-power equipment close to potential explosives and inflammable substances, industries direct large sums of investment into making these inspection systems intrinsically safe by designing complex structures and devising procedures to isolate such equipment from the system or process entirely. However, the uncertainty regarding the effectiveness of such protective measures results in a persisting difficulty in obtaining plant safety certifications and approvals. In this paper, the application of a coded excitation method to make inspection systems intrinsically safe and easily certifiable is explored. Using a pulse compression-based signal processing technique called coded excitation, it has been made possible to achieve non-contact transduction (electromagnetic acoustic transduction and air-coupled transduction) in transmitreceive mode with excitation as low as 0.5 Vpp (peak-to-peak supply voltage). This work reports on the application of coded excitation in bringing down the transduction power requirements for guided ultrasonic wave inspection, thereby making it possible to formulate new inspection applications at very low power, particularly in safety-critical industries.


2021 ◽  
Vol 11 (20) ◽  
pp. 9368
Author(s):  
Elise Doveri ◽  
Laurent Sabatier ◽  
Vincent Long ◽  
Philippe Lasaygues

Medical B-mode ultrasound is widely used for the examination of children’s limbs, including soft tissue, muscle, and bone. However, for the accurate examination of the bone only, it is often replaced by more restrictive clinical modalities. Several authors have investigated ultrasonic imaging of bone to assess cortical thickness and/or to estimate the wave velocity through the internal structure. The present work focuses on the transverse slice imaging process using reflection-mode ultrasound computed tomography (USCT). The method is valid for imaging soft tissues with similar acoustic impedances, but in the presence of bone, the higher contrasts alter the propagation of ultrasonic waves and reduce the contrast-to-noise ratio (CNR). There is a need to change the methods used for the processing of ultrasonic signals. Our group has developed a wavelet-based coded excitation (WCE) method to process information in frequency and time. The objective of this study is to use the method to improve reflection-mode USCT, at low ultrasonic intensities, to better address organ morphometry. Experimental results on a newborn arm phantom and on an ex vivo chicken drumstick are presented, and the usefulness of this WCE-mode USCT is discussed.


Ultrasonics ◽  
2021 ◽  
pp. 106606
Author(s):  
Jianying Tang ◽  
Wujun Zhu ◽  
Xunlin Qiu ◽  
Ailing Song ◽  
Yanxun Xiang ◽  
...  

2021 ◽  
Vol 92 (7) ◽  
pp. 074901
Author(s):  
Antti Meriläinen ◽  
Jere Hyvönen ◽  
Ari Salmi ◽  
Edward Hæggström

Signals ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 366-377
Author(s):  
Marius Schäfer ◽  
Hendrik Theado ◽  
Michael M. Becker ◽  
Sarah C. L. Fischer

The cross-correlation function (CCF) is an established technique to calculate time-of-flight for ultrasonic signals. However, the quality of the CCF depends on the shape of the input signals. In many use cases, the CCF can exhibit secondary maxima in the same order of magnitude as the main maximum, making its interpretation less robust against external disturbances. This paper describes an approach to optimize ultrasonic signals for time-of-flight measurements through coded excitation sequences. The main challenge for applying coded excitation sequences to ultrasonic signals is the influence of the piezoelectric transducer on the outgoing signal. Thus, a simulation model to describe the transfer function of an experimental setup was developed and validated with common code sequences such as pseudo noise sequences (PN), Barker codes and chirp signals. Based on this model an automated optimization of ultrasonic echoes was conducted with random generated sequences, resulting in a decrease in the secondary positive maximum of the CCF to 56.6%. Based on these results, further empiric optimization leveraging the nonlinear regime of the piezoelectric transducer resulted in an even lower secondary positive maximum of the CCF with a height of 25% of the first maximum. Experiments were conducted on different samples to show that the findings hold true for small variations in the experimental setup; however, further work is necessary to develop transfer functions and simulations able to include a wider parameter space, such as varying transducer types or part geometry.


2021 ◽  
Author(s):  
Xuegang Su

We are investigating the feasibility of binary coded excitation methods using Golay code pairs for high frequency ultrasound imaging as a way to increase the signal to noise ratio. I present some theoretical models used to simulate the coded excitation method and results generated from the models. A new coded excitation high frequency ultrasound prototype system was built to verify the simulation results. Both the simulation and the experimental results show that binary coded excitation can improve the signal to noise ratio in high frequency ultrasound backscatter signals. These results are confirmed in phantoms and excised bovine liver. If just white noise is considered, the encoding gain is 15dB for a Golay pair of length 4. We find the system to be very sensitive to motion (i.e. phase shift) and frequency dependent (FD) attenuation, creating sidelobes and degrading axial resolution and encoding gain. Methods to address these issues are discussed.


2021 ◽  
Author(s):  
Xuegang Su

We are investigating the feasibility of binary coded excitation methods using Golay code pairs for high frequency ultrasound imaging as a way to increase the signal to noise ratio. I present some theoretical models used to simulate the coded excitation method and results generated from the models. A new coded excitation high frequency ultrasound prototype system was built to verify the simulation results. Both the simulation and the experimental results show that binary coded excitation can improve the signal to noise ratio in high frequency ultrasound backscatter signals. These results are confirmed in phantoms and excised bovine liver. If just white noise is considered, the encoding gain is 15dB for a Golay pair of length 4. We find the system to be very sensitive to motion (i.e. phase shift) and frequency dependent (FD) attenuation, creating sidelobes and degrading axial resolution and encoding gain. Methods to address these issues are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaochun Wang ◽  
Jun Yang ◽  
Jianjun Ji ◽  
Yusheng Zhang ◽  
Sheng Zhou

AbstractHigh frequency ultrasonic imaging provides clinicians with high-resolution diagnostic images and more accurate measurement results. The technique is now widely used in ophthalmology, dermatology, and small animal imaging. However, since ultrasonic attenuation in tissue increases rapidly with increasing frequency, the depth of detection of high frequency ultrasound in tissue is limited to a few millimeters. In this paper, a novel method of using Golay-coded excitation as a replacement for conventional single-pulse excitation in high frequency ultrasound biomicroscopy was proposed, and real-time imaging was realized. While maintaining the transmission voltage and image resolution unchanged, the detection depth can be effectively improved. The ultrasonic transmission frequency is 30 MHz and the transmission voltage is ± 60 V p-p. In this study, 4-bit, 8-bit, and 16-bit coding sequences and decoding compression were used. To verify the effectiveness of the coding sequence in real-time imaging of ultrasound biomicroscopy, we designed a 10-μm diameter line target echo experiment, an ultrasound phantom experiment, and an in vitro porcine eye experiment. The experimental results show that the code/decode method of signal processing can not only maintain a resolution consistent with that of single-pulse transmission, but can also improve the detection depth and signal-to-noise ratio.


Sign in / Sign up

Export Citation Format

Share Document