estimation and correction
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 45)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Alexander A. Afonin ◽  
◽  
Andrey S. Sulakov ◽  
M.S. Maamo ◽  
◽  
...  

Nowadays, high-precision measurement of aircraft vibration parameters during its main operations modes, including in-flight operation mode, is still considered an important scientific and technical field of study and research. These kinds of measurements are usually conducted in order to analyze the airplane vibration properties and characteristics, which serves in diagnosing the state of its structure, predicting the appearance and development of defects and deformations, as well as to prevent or avoid the influence of dangerous phenomena such as flutter, buffeting, etc. In this article, the authors present the primary results of their work to build a system designed to measure such airplane vibration parameters. In comparison with the existing analogous systems, the new proposed system makes use of traditional vibrometric measurement methods in combination with approaches typical for solving orientation and navigation problems. So, the article discusses the principles of constructing a measurement system of vibration parameters of aircraft structural elements using the example of a system for measuring aircraft wing vibrations using MEMS IMU units and data fusion technology. A brief review of the main existing solutions in this research field is carried out, and the relevance and expediency of the proposed version of the system is substantiated. The basic components and structure of the proposed system are presented, including MEMS IMU units, a displacement sensor, and an onboard navigation system. The basic principles of the system operation are described based on the use of data from the displacement sensor, inertial measurements and optimal Kalman estimation. The main algorithms for the system operation are presented, including algorithms for inertial measurements, estimation and correction, as well as the actual algorithm for calculating vibration parameters. In addition, the mathematical errors models of the main measurements units of the system are presented. The article also presents simulation results, which are encouraging, and they demonstrate the performance of the system and its expected relatively high accuracy characteristics, which in turns confirms the expected efficiency of its application and the prospects of the chosen direction of research and development.


Author(s):  
А.А. Афонин ◽  
А.С. Сулаков ◽  
М.Ш. Маамо

В настоящее время в связи со всевозрастающей степенью сложности проектирования, производства и эксплуатации летательных аппаратов все более важным направлением в области развития информационно-измерительных систем становится совершенствование существующих и разработка новых способов измерения параметров вибрации элементов механических конструкций летательных аппаратов. Целью данной работы является анализ возможности и перспективности построения системы для измерения вибраций элементов конструкции самолета на основе использования микромеханических инерциальных измерительных блоков в качестве основных виброметрических измерителей. При этом объектом исследования является система измерения параметров вибрации, а предметом – ее структура, состав, алгоритмы функционирования и ожидаемые точностные характеристики. Для достижения поставленной цели строится информационно-измерительная система на базе инерциальных приборов, а также датчиков для непосредственных измерений перемещений, используются численные и аналитические методы высшей математики и теоретической механики, методы теории случайных процессов и оптимального оценивания. В статье рассмотрены принципы построения такой системы на примере варианта системы измерения параметров вибраций крыла самолета, представлен краткий обзор существующих решений в предметной области и обоснована актуальность и целесообразность предложенного варианта технического решения. Приведены базовый состав и структура системы, описаны основные принципы ее работы, основанные на использовании данных датчиков перемещения, инерциальных измерителей и оптимального калмановского оценивания и коррекции. Показаны основные алгоритмы работы системы, включая алгоритмы ориентации и навигации, оценивания и коррекции при замкнуто-разомкнутой схеме включения оптимального фильтра Калмана, алгоритм вычисления параметров вибрации, представленыматематические модели ошибок основных измерителей системы, показаны полученные предварительные результаты имитационного моделирования, демонстрирующие работоспособность системы и ее ожидаемые приемлемые точностные характеристики, подтверждающие возможность эффективного использования системы и перспективность выбранного направления работ. At present, because of the ever-increasing degree of complexity of aircrafts design, production and operation, the improvement of the existing methods and development of new ones for vibration parameters measurement of aircrafts mechanical structural elements is still an important direction in the field of information-measurement systems development. The purpose of this work is to analyze the possibility and prospects of constructing a system for measuring vibrations of aircraft structural elements based on the use of micromechanical inertial measurement units as the main vibrometric transducers. In this case, the object of research is the vibration parameters measurement system, and the subject is its structure, composition, operations algorithms and the expected accuracy characteristics. To achieve this purpose, an information-measurement system is built on the basis of inertial devices, as well as sensors for direct displacements measurements, numerical and analytical methods of higher mathematics and theoretical mechanics, methods of random processes theory and optimal estimation are used. The article discusses the principles of constructing such system taking as an example a system for measuring the vibration parameters of an aircraft wing, provides a brief overview of the existing solutions in this field of applications and substantiates the relevance and expediency of the proposed methodology of the technical solution. The basic components and structure of the system are presented, the basic principles of its operation are described, based on the use of data from displacement sensors, inertial meters and optimal Kalman estimation and correction. The main algorithms of the system operation are shown, including the orientation and navigation algorithm, estimation and correction algorithm for a closed-open scheme of optimal Kalman filter inclusion in the system, algorithm for calculating vibration parameters, beside the mathematical errors models of the main system sensors and channels are presented, preliminary results of simulation modeling are shown and they demonstrate the operability of the system and its expected acceptable accuracy characteristics, confirming the possibility of the effective use of the proposed system and the prospects of the chosen direction of work.


2021 ◽  
Author(s):  
Andres Flores-Valle ◽  
Johannes D Seelig

Two-photon imaging in behaving animals is typically accompanied by brain motion. For functional imaging experiments, for example with genetically encoded calcium indicators, such brain motion induces changes in fluorescence intensity. These motion related intensity changes or motion artifacts cannot easily be separated from neural activity induced signals. While lateral motion within the focal plane can be corrected by computationally aligning images, axial motion, out of the focal plane, cannot easily be corrected. Here, we develop an algorithm for axial motion correction for non-ratiometric calcium indicators taking advantage of simultaneous multi-plane imaging. Using at least two simultaneously recorded focal planes, the algorithm separates motion related and neural activity induced changes in fluorescence intensity. The developed motion correction approach allows axial motion estimation and correction at high frame rates for isolated structures in the imaging volume in vivo, such as sparse expression patterns in the fruit fly brain.


Author(s):  
Richard Brown ◽  
Christoph Kolbitsch ◽  
Claire Delplancke ◽  
Evangelos Papoutsellis ◽  
Johannes Mayer ◽  
...  

SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF’s recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF’s integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2’.


Sign in / Sign up

Export Citation Format

Share Document