scholarly journals Full-field, carrier-less, polarization-diversity, direct detection receiver based on phase retrieval

Author(s):  
Haoshuo Chen ◽  
N.K. Fontaine ◽  
J.M. Gené ◽  
R. Ryf ◽  
D.T. Neilson ◽  
...  
2021 ◽  
Author(s):  
H. Chen ◽  
N. K. Fontaine ◽  
M. Mazur ◽  
L. Dallachiesa ◽  
Y. Zhang ◽  
...  

2021 ◽  
Author(s):  
Qi Wu

Phase-retrieval (PR) schemes based on the modified Gerchberg-Saxton (GS) algorithm capture the full-field employing a dispersive element and intensity-only measurements to eliminate the use of a local oscillator. In this work, we propose two carrier-assisted PR schemes, namely central carrier-assisted PR (CCA-PR) and edge carrier-assisted PR (ECA-PR), to improve the comprehensive performance of PR receiver in terms of convergence speed, redundancy, and computational complexity. The proposed CCA-PR recovers the electrical field employing a reference carrier at 0 GHz with several iterations between two projection planes. It avoids pilot symbols and digital backpropagation to the transmitter and offers a flexible electrical bandwidth requirement compared with conventional PR schemes. To lower the carrier-to-signal power ratio (CSPR) requirement and enable faster convergence for the carrier-assisted PR schemes, the ECA-PR is proposed to obtain the initial phase for the GS algorithm. We numerically characterize the performance of the two schemes and experimentally demonstrate them for 30 GBaud 16-quadrature amplitude modulation (16-QAM) transmission over 80 km single-mode fiber with a bit error rate (BER) below the threshold of 7% hard-decision forward error correction (HD-FEC). Several critical parameters are analyzed, including the applied dispersion value, CSPR, and electrical bandwidth. Moreover, we compare the hardware complexity and optical signal-to-noise ratio (OSNR) sensitivity of proposed PR schemes with mainstream field recovery schemes.


Author(s):  
Haoshuo Chen ◽  
Juan Carlos Alvarado-Zacarias ◽  
Hanzi Huang ◽  
Nicolas K. Fontaine ◽  
Roland Ryf ◽  
...  

2020 ◽  
Author(s):  
M. Reichardt ◽  
C. Neuhaus ◽  
J-D. Nicolas ◽  
M. Bernhardt ◽  
K. Toischer ◽  
...  

ABSTRACTWe present a multi-scale imaging approach to characterize the structure of isolated adult murine cardiomyocytes based on a combination of full-field three-dimensional (3d) coherent x-ray imaging and scanning x-ray diffraction. Using these modalities, we probe the structure from the molecular to the cellular scale. Holographic projection images on freeze-dried cells have been recorded using highly coherent and divergent x-ray waveguide radiation. Phase retrieval and tomographic reconstruction then yield the 3d electron density distribution with a voxel size below 50 nm. In the reconstruction volume, myofibrils, sarcomeric organisation and mitochondria can be visualized and quantified within a single cell without sectioning. Next, we use micro-focusing optics by compound refractive lenses to probe the diffraction signal of the acto-myosin lattice. Comparison between recordings of chemically fixed and untreated, living cells indicate that the characteristic lattice distances shrink by approximately 10% upon fixation.SIGNIFICANCEDiffraction with synchrotron radiation has played an important role to decipher the molecular structure underlying force generation in muscle. In this work, the diffraction signal of the actomyosin contractile unit has for the first time been recorded from living cardiomyocytes, bringing muscle diffraction to the scale of single cells. In addition to scanning diffraction, we use coherent optics at the same synchrotron endstation to perform holographic imaging and tomography on a single cardiomyocyte. By this hard x-ray microscopy modality, we extend the length scales covered by scanning diffraction and reconstruct the electron density of an entire freeze-dried cardiomyocyte, visualizing the 3d architecture of myofibrils, sarcomers, and mitochondria with a voxel size below 50 nm.


Sign in / Sign up

Export Citation Format

Share Document