forward error
Recently Published Documents


TOTAL DOCUMENTS

904
(FIVE YEARS 102)

H-INDEX

34
(FIVE YEARS 3)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 122
Author(s):  
Svitlana Matsenko ◽  
Oleksiy Borysenko ◽  
Sandis Spolitis ◽  
Aleksejs Udalcovs ◽  
Lilita Gegere ◽  
...  

Forward error correction (FEC) codes combined with high-order modulator formats, i.e., coded modulation (CM), are essential in optical communication networks to achieve highly efficient and reliable communication. The task of providing additional error control in the design of CM systems with high-performance requirements remains urgent. As an additional control of CM systems, we propose to use indivisible error detection codes based on a positional number system. In this work, we evaluated the indivisible code using the average probability method (APM) for the binary symmetric channel (BSC), which has the simplicity, versatility and reliability of the estimate, which is close to reality. The APM allows for evaluation and compares indivisible codes according to parameters of correct transmission, and detectable and undetectable errors. Indivisible codes allow for the end-to-end (E2E) control of the transmission and processing of information in digital systems and design devices with a regular structure and high speed. This study researched a fractal decoder device for additional error control, implemented in field-programmable gate array (FPGA) software with FEC for short-reach optical interconnects with multilevel pulse amplitude (PAM-M) modulated with Gray code mapping. Indivisible codes with natural redundancy require far fewer hardware costs to develop and implement encoding and decoding devices with a sufficiently high error detection efficiency. We achieved a reduction in hardware costs for a fractal decoder by using the fractal property of the indivisible code from 10% to 30% for different n while receiving the reciprocal of the golden ratio.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012025
Author(s):  
B.S. Premananda ◽  
T.N. Dhanush ◽  
Vaishnavi S. Parashar

Abstract Quantum-dot Cellular Automata (QCA) is a transistor-less technology known for its low power consumption and higher clock rate. Serial Concatenated Convolutional Coding (SCCC) encoder is a class of forward error correction. This paper picturizes the implementation of the outer encoder as a (7, 4, 1) Bose Chaudhary Hocquenghem encoder that serves the purpose of burst error correction, a pseudo-random inter-leaver used for permuting of systematic code words and finally the inner encoder which is used for the correction of random errors in QCA. Two different architectures of the SCCC encoder have been proposed and discussed in this study. In the proposed two architectures, the first based on external clock signals whereas the second based on internal clock generation. The sub-blocks outer encoder, pseudo-random inter-leaver and inner encoder of the SCCC encoder are optimized, implemented and simulated using QCADesigner and then integrated to design a compact SCCC encoder. The energy dissipation is computed using QCADesigner-E. The proposed SCCC encoder reduced the total area by 46% and energy dissipation by 50% when compared to the reference SCCC encoder. The proposed encoders are more efficient in terms of cell count, energy dissipation and area occupancy respectively.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Changyu Zhou ◽  
Youpeng Xie ◽  
Jianxin Ren ◽  
Zepeng Wei ◽  
Luping Du ◽  
...  

Abstract Polarimetry has been demonstrated essential in various disciplines, such as optical communications, imaging, and astronomy. On-chip nanostructures for polarization measurements are most expected to replace the conventional bulk elements, and hence minimize the polarimeter for integrated applications. Some on-chip nanophotonic polarimeter via polarization detection has been implemented, in which the separation of two spin polarized states is needed. However, due to the relatively low coupling efficiency or complicated photonic silicon circuits, on-chip polarimetry using a single device still remains challenging. Here, we introduce and investigate an on-chip polarimeter with nanostructures using the inverse design method. The developed device shows the ability to detect the four polarization components of light, two of which are the spin polarizations, and the other two are the linear polarizations. The retrieved Stokes parameters with experimentally tested data are in close agreement with the numerical results. We also show the proof of concept demonstration for high-speed Stokes vector optical signals detection. In the high-speed communication experiment with data rate up to 16 GBd, the detected optical signals via polarization measurements at multiple wavelengths in the C-band were recovered with the bit error rate below the 20% forward error correction threshold. The proposed on-chip polarimeter shows promising performance both in Stokes polarimetry and high-speed optical communication applications.


2021 ◽  
Author(s):  
Andreas Bisplinghoff ◽  
Stefan Langenbach ◽  
Theodor Kupfer

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2248
Author(s):  
Ahmed F. Hussein ◽  
Dola Saha ◽  
Hany Elgala

Recently, research on sixth-generation (6G) networks has gained significant interest. 6G is expected to enable a wide-range of applications that fifth-generation (5G) networks will not be able to serve reliably, such as tactile Internet. Additionally, 6G is expected to offer Terabits per second (Tbps) data rates, 10 times lower latency, and near 100% coverage, compared to 5G. Thus, 6G is expected to expand across all available spectrums including terahertz (THz) and optical frequency bands. In this manuscript, mixed-carrier communication (MCC) is investigated as a novel physical layer (PHY) design for 6G networks. The proposed MCC version in this study is based on visible light communication (VLC). MCC enables a unified transmission PHY design to connect devices with different complexities, simultaneously. The design trade-offs and the required signal-to-noise ratio (SNR) per individual modulation schemes embedded within MCC are investigated. The complexity analysis shows that a conventional optical OFDM receiver can capture the high-speed bit-stream embedded within MCC. For a forward error correction (FEC) bit-error-rate (BER) threshold of 3.8×10−3, MCC is optimized to maximize the spectral efficiency by embedding 2-beacon phase-shift keying (2-BnPSK) within an MCC envelope on top of 12 bits per beacon position modulation (BPM) symbol.


Sign in / Sign up

Export Citation Format

Share Document