Robust composite controller design for high-accuracy positioning system

Author(s):  
Liu Hongbin ◽  
Hu Dejin
1970 ◽  
Vol 5 (2) ◽  
Author(s):  
Wahyudi Tarig Faisal and Abdulgani Albagul

Positioning systems generally need a good controller to achieve high accuracy, fast response and robustness. In addition, ease of controller design and simplicity of controller structure are very important for practical application.  For satisfying these requirements, nominal characteristic trajectory following controller (NCTF) has been proposed as a practical point-to-point (PTP) positioning control. However, the effect of actuator saturation can not be completely compensated for due to the integrator windup as the plant parameters vary. This paper presents a method to improve the NCTF controller for overcoming the problem of integrator windup using simple and classical tracking anti-windup scheme. The improved NCTF controller is evaluated through simulation using a rotary positioning system. The results show that the improved NCTF controller is adequate to compensate for the effect of integrator windup. Keywords: Positioning, point-to-point, integrator windup, compensation, controller, robustness.


2010 ◽  
Vol 166-167 ◽  
pp. 271-276 ◽  
Author(s):  
Mihai Margaritescu ◽  
Ana Maria Eulampia Ivan ◽  
Vlad Vaduva ◽  
Cornel Brisan

The double hexapod robot consists in two staged hexapod platforms – Stewart Gough platforms - combining in a certain measure the advantages of the robots with parallel kinematics and of the serial robots: high accuracy, high stiffness, fast response and small dimensions, having an extended operating space. Different modelling and construction aspects were described in few previous articles. Some examples of trajectories generated with this positioning system are now presented to illustrate its mobility, as well as the workspaces for one and two hexapods in order to make possible a visual comparison between the two volumes.


2019 ◽  
Vol 39 (1) ◽  
pp. 0115001
Author(s):  
徐秋宇 Xu Qiuyu ◽  
杨凌辉 Yang Linghui ◽  
牛志远 Niu Zhiyuan ◽  
刘博文 Liu Bowen ◽  
张正吉 Zhang Zhengji ◽  
...  

2019 ◽  
Vol 72 (04) ◽  
pp. 917-930
Author(s):  
Fang-Shii Ning ◽  
Xiaolin Meng ◽  
Yi-Ting Wang

Connected and Autonomous Vehicles (CAVs) have been researched extensively for solving traffic issues and for realising the concept of an intelligent transport system. A well-developed positioning system is critical for CAVs to achieve these aims. The system should provide high accuracy, mobility, continuity, flexibility and scalability. However, high-performance equipment is too expensive for the commercial use of CAVs; therefore, the use of a low-cost Global Navigation Satellite System (GNSS) receiver to achieve real-time, high-accuracy and ubiquitous positioning performance will be a future trend. This research used RTKLIB software to develop a low-cost GNSS receiver positioning system and assessed the developed positioning system according to the requirements of CAV applications. Kinematic tests were conducted to evaluate the positioning performance of the low-cost receiver in a CAV driving environment based on the accuracy requirements of CAVs. The results showed that the low-cost receiver satisfied the “Where in Lane” accuracy level (0·5 m) and achieved a similar positioning performance in rural, interurban, urban and motorway areas.


Sign in / Sign up

Export Citation Format

Share Document