Modeling of power system with converter elements in lyapunov direct method based on time scale selection

Author(s):  
Z. Chen ◽  
Z. Du ◽  
W. Zhang ◽  
H. Ouyang
2014 ◽  
Vol 47 (3) ◽  
pp. 9087-9092 ◽  
Author(s):  
Igor B. Yadykin ◽  
Dmitry E. Kataev ◽  
Alexey B. Iskakov ◽  
Vladislav K. Shipilov

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.


Author(s):  
Thang Van Nguyen ◽  
Y. Minh Nguyen ◽  
Yong Tae Yoon

Abstract This paper proposes a new method for assessing static voltage stability based on the local loadability boundary or P- Q curve in two dimensional power parameter space. The proposed method includes three main steps. The first step is to determine the critical buses and the second step is building the local loadability boundary or the saddle node bifurcation set for those critical buses. The final step is assessing the static voltage stability through the distance from current operating point to the boundary. The critical buses are defined through the right eigenvector by direct method. The boundary obtained by the proposed method that is combining a variation of standard direct method and Thevenin equivalent model of electric power system is a quadratic curve. And finally the distance is computed through the Euclid norm of normal vector of the boundary at the closest saddle node bifurcation point. The advantage of the proposed method is that it keeps the advantages of both efficient methods, the accuracy of the direct method and simple of Thevenin Equivalent based method. Thus, the proposed method holds some promise in terms of performing the real time voltage stability assessment of power system. Test results of New England 39 bus system are presented to show the effectiveness of the proposed method.


2020 ◽  
Vol 102 (3) ◽  
pp. 1651-1665
Author(s):  
Kanthimathi Raman ◽  
Kamala Jeyaraman ◽  
Saad Mekhilef ◽  
Lincy Grace Alexander

2019 ◽  
Vol 25 (10) ◽  
pp. 1614-1628 ◽  
Author(s):  
Xingpeng Zhang ◽  
Dong Li ◽  
Xiaohong Zhang

In this paper, a new lemma is proposed to study the stability of a fractional order complex chaotic system without dividing the complex number into real and imaginary parts. The proving process of the new lemma combines the fundamental properties of the complex field and the fractional order extension of the Lyapunov direct method. It extends the fractional order extension of the Lyapunov direct method from the real number field to the complex number field. Based on the new lemma, we propose a new impulsive synchronization scheme for fractional order complex chaotic systems. The numerical simulation results also show the validity of our conclusion.


2017 ◽  
Vol 31 (05) ◽  
pp. 1750031 ◽  
Author(s):  
Jiyang Chen ◽  
Chuandong Li ◽  
Tingwen Huang ◽  
Xujun Yang

In this paper, the memristor-based fractional-order neural networks (MFNN) with delay and with two types of stabilizing control are described in detail. Based on the Lyapunov direct method, the theories of set-value maps, differential inclusions and comparison principle, some sufficient conditions and assumptions for global stabilization of this neural network model are established. Finally, two numerical examples are presented to demonstrate the effectiveness and practicability of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document