VOLTAGE CONTROL IN LV DISTRIBUTION NETWORKS CONSIDERING INCREASING PENETRATION OF LOW CARBON TECHNOLOGIES

2021 ◽  
Author(s):  
Arijit Bagchi ◽  
Declan Bradley ◽  
Robert Best ◽  
D. John Morrow
Author(s):  
Rilwan O. Oliyide ◽  
Liana M. Cipcigan

The impacts of uptake and electricity load profiles of Electric Vehicles (EVs) and Heat Pumps (HPs) on the low voltage (LV) distribution networks were analyzed. The United Kingdom (UK) has a legally mandated policy concerning reduction of greenhouse gasses (GHGs) emissions. Therefore, the integration of low carbon technologies (LCTs) especially EVs and HPs at the LV networks is expected to increase in the drive to reducing the GHGs emissions. Future uptake scenarios, adapted from the National Grid studies, of EVs and HPs were developed for a real and typical urban LV distribution network in Great Britain (GB). Gridlab-D, an agent-based power system simulation software, was used to model the LV distribution network. The model was run for four different scenarios considering seasonal load profiles and projected EVs and HPs uptakes for each of the year 2020, 2030, 2040 and 2050 respectively. The results were analyzed in terms of transformer loading, voltage profiles of the feeders, and the ampacity loading of the cables for the different scenarios of the years.


Author(s):  
Victor Levi ◽  
Gillian Williamson ◽  
James King ◽  
Vladimir Terzija

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3293
Author(s):  
Valentin Ilea ◽  
Cristian Bovo ◽  
Davide Falabretti ◽  
Marco Merlo ◽  
Carlo Arrigoni ◽  
...  

Renewable Energy Sources are becoming widely spread, as they are sustainable and low-carbon emission. They are mostly penetrating the MV Distribution Networks as Distributed Generators, which has determined the evolution of the networks’ control and supervision systems, from almost a complete lack to becoming fully centralized. This paper proposes innovative voltage control architectures for the distribution networks, tailored for different development levels of the control and supervision systems encountered in real life: a Coordinated Control for networks with basic development, and an optimization-based Centralized Control for networks with fully articulated systems. The Centralized Control fits the requirements of the network: the challenging harmonization of the generator’s capability curves with the regulatory framework, and modelling of the discrete control of the On-Load Tap Changer transformer. A realistic network is used for tests and comparisons with the Local Strategy currently specified by regulations. The proposed Coordinated Control gives much better results with respect to the Local Strategy, in terms of loss minimization and voltage violations mitigation, and can be used for networks with poorly developed supervision and control systems, while Centralized Control proves the best solution, but can be applied only in fully supervised and controlled networks.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1447-1452
Author(s):  
Vincent Mazauric ◽  
Ariane Millot ◽  
Claude Le Pape-Gardeux ◽  
Nadia Maïzi

To overcome the negative environemental impact of the actual power system, an optimal description of quasi-static electromagnetics relying on a reversible interpretation of the Faraday’s law is given. Due to the overabundance of carbon-free energy sources, this description makes it possible to consider an evolution towards an energy system favoring low-carbon technologies. The management for changing is then explored through a simplified linear-programming problem and an analogy with phase transitions in physics is drawn.


Sign in / Sign up

Export Citation Format

Share Document