Practical robust uplink pilot time interval optimisation scheme for time-division duplex multiple-input-single-output beamforming system

2012 ◽  
Vol 6 (9) ◽  
pp. 1075
Author(s):  
B. Zhou ◽  
L. Jiang ◽  
C. He ◽  
S. Zhao
Author(s):  
Mojtaba Ghermezcheshmeh ◽  
Mohsen Mohammadkhani Razlighi ◽  
Vahid Shah-Mansouri ◽  
Nikola Zlatanov

2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881109 ◽  
Author(s):  
Pan Zhao ◽  
Lei Feng ◽  
Peng Yu ◽  
Wenjing Li ◽  
Xuesong Qiu

The explosive demands for mobile broadband service bring a major challenge to 5G wireless networks. Device-to-device communication, adopting side links for user-direct communication, is regarded as a main technical source for offloading large volume of mobile traffic from cellular base station. This article investigates the joint power and subcarrier allocation scheme for device-to-device communication in 5G time division duplex systems. In time division duplex system, instead of utilizing an exclusive portion of the precious cellular spectrum, device-to-device pairs reuse the subcarriers occupied by cellular users, thus producing harmful interference to cellular users in both uplink and downlink communication, and strongly limiting the spectrum efficiency of the system. To this end, we focus on the maximization of device-to-device throughput while guaranteeing both uplink and downlink channel quality of service of cellular users as well as device-to-device pairs. The problem is formulated as a mixed integer non-linear programming (MINLP) problem. To make it tractable, we separate the original MINLP problem into two sub problems: power allocation and sub-carrier reusing. The former is to develop optimal power allocation for each device-to-device pair and each cellular user, with the constraints of maximum power and quality of service. It is solved by geometric programming technique in convex optimization method. The latter is derived as a one-to-many matching problem for scheduling multiple subcarriers occupied by cellulars to device-to-device pairs. It is solved by Hungarian method. Simulation results show that the proposed scheme significantly improves system capacity of the device-to-device underlay network, with quality of service of both device-to-device users and cellular users guaranteed.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Francis Assadian ◽  
Alex K. Beckerman ◽  
Jose Velazquez Alcantar

Youla parametrization is a well-established technique in deriving single-input single-output (SISO) and, to a lesser extent, multiple-input multiple-ouput (MIMO) controllers (Youla, D., Bongiorno, J. J., Jr., and Lu, C., 1974, “Singleloop Feedback-Stabilization of Linear Multivariable Dynamical Plants,” Automatica, 10(2), pp. 159–173). However, the utility of this methodology in estimation design, specifically in the framework of controller output observer (COO) (Ozkan, B., Margolis, D., and Pengov, M., 2008, “The Controller Output Observer: Estimation of Vehicle Tire Cornering and Normal Forces,” ASME J. Dyn. Syst., Meas., Control, 130(6), p. 061002), is not established. The fundamental question to be answered is as follows: is it possible to design a deterministic estimation technique using Youla paramertization with the same robust performance, or better, than well-established stochastic estimation techniques such as Kalman filtering? To prove this point, at this stage, a comparative analysis between Youla parametrization in estimation and Kalman filtering is performed through simulations only. In this paper, we provide an overview of Youla parametrization for both control and estimation design. We develop a deterministic SISO and MIMO Youla estimation technique in the framework of COO, and we investigate the utility of this method for two applications in the automotive domain.


2015 ◽  
Vol 9 (3) ◽  
pp. 396-403 ◽  
Author(s):  
Zheng Chu ◽  
Kanapathippillai Cumanan ◽  
Zhiguo Ding ◽  
Mai Xu

Sign in / Sign up

Export Citation Format

Share Document