scholarly journals Hybrid segmentation method based on multi‐scale Gaussian kernel fuzzy clustering with spatial bias correction and region‐scalable fitting for breast US images

2018 ◽  
Vol 12 (8) ◽  
pp. 1067-1077 ◽  
Author(s):  
Lipismita Panigrahi ◽  
Kesari Verma ◽  
Bikesh Kumar Singh
Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1423
Author(s):  
Javier Bonilla ◽  
Daniel Vélez ◽  
Javier Montero ◽  
J. Tinguaro Rodríguez

In the last two decades, information entropy measures have been relevantly applied in fuzzy clustering problems in order to regularize solutions by avoiding the formation of partitions with excessively overlapping clusters. Following this idea, relative entropy or divergence measures have been similarly applied, particularly to enable that kind of entropy-based regularization to also take into account, as well as interact with, cluster size variables. Particularly, since Rényi divergence generalizes several other divergence measures, its application in fuzzy clustering seems promising for devising more general and potentially more effective methods. However, previous works making use of either Rényi entropy or divergence in fuzzy clustering, respectively, have not considered cluster sizes (thus applying regularization in terms of entropy, not divergence) or employed divergence without a regularization purpose. Then, the main contribution of this work is the introduction of a new regularization term based on Rényi relative entropy between membership degrees and observation ratios per cluster to penalize overlapping solutions in fuzzy clustering analysis. Specifically, such Rényi divergence-based term is added to the variance-based Fuzzy C-means objective function when allowing cluster sizes. This then leads to the development of two new fuzzy clustering methods exhibiting Rényi divergence-based regularization, the second one extending the first by considering a Gaussian kernel metric instead of the Euclidean distance. Iterative expressions for these methods are derived through the explicit application of Lagrange multipliers. An interesting feature of these expressions is that the proposed methods seem to take advantage of a greater amount of information in the updating steps for membership degrees and observations ratios per cluster. Finally, an extensive computational study is presented showing the feasibility and comparatively good performance of the proposed methods.


2016 ◽  
Vol 9 (15) ◽  
Author(s):  
Chao Wang ◽  
Wei Xu ◽  
Xiao-fang Pei ◽  
Xiao-yan Zhou

2021 ◽  
Author(s):  
Rasa Vafaie

Segmentation of prostate boundaries in transrectal ultrasound (TRUS) images plays a great role in prostate cancer diagnosis. Due to the low signal to noise ratio and existence of the speckle noise in TRUS images, prostate image segmentation has proven to be an extremely difficult task. In this thesis report, a fast fully automated hybrid segmentation method based on probabilistic approaches is presented. First, the position of the initial model is automatically estimated using prostate boundary representative patterns. Next, the Expectation Maximization (EM) algorithm and Markov Random Field (MRF) theory are utilized in the deformation strategy to optimally fit the initial model on the prostate boundaries. A less computationally EM algorithm and a new surface smoothing technique are proposed to decrease the segmentation time. Successful experimental results with the average Dice Similarity Coefficient (DSC) value 93.9±2.7% and computational time around 9 seconds validate the algorithm.


Sign in / Sign up

Export Citation Format

Share Document