flood event
Recently Published Documents


TOTAL DOCUMENTS

576
(FIVE YEARS 177)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
Vol 14 (1) ◽  
pp. 554
Author(s):  
Fotios Spyropoulos ◽  
Ioannis Trichakis ◽  
Anthi-Eirini Vozinaki

In the framework of a water resources management class in the Technical University of Crete, a narrative-driven role-playing game (RPG) was planned and tested in the classroom, with the intent to raise awareness among the students on how floods can have an impact on the everyday lives of different citizens. During this game, the students had the opportunity to act as different stakeholders. In order to assess the impact of this game on participants’ thoughts of who might be affected by a flood event, two questionnaires were used, one before and one after the game. The results show that there was very positive feedback from the participants on how this RPG helped them realize the different implications a flood event might have on citizens and decision makers. The community-based aspect that was chosen for this RPG implementation showed the difficulties the specific roles would face as single individuals and as a community in general. Using a similar approach can help any stakeholder understand the challenges in a more direct way than with traditional lecturing and presentations.


2022 ◽  
pp. 689-741
Author(s):  
George Varlas ◽  
Marios Anagnostou ◽  
Christos Spyrou ◽  
Aikaterini Pappa ◽  
Angeliki Mentzafou ◽  
...  
Keyword(s):  

2021 ◽  
pp. 102-112
Author(s):  
Blair S. Holloway

Coastal flooding occurs when saltwater inundates normally dry land and the resulting impacts can range from minor flooding of low-lying areas along the coast, to significant damage to property and structures. Previous research consistently suggests that if sea-level rise continues to increase along the East Coast of the United States, coastal flooding will occur more frequently. In order to document the history of coastal flooding along the southeastern Georgia and southeastern South Carolina coast, a coastal flood event database was created for National Ocean Service tide gauges located in Charleston Harbor, South Carolina and Fort Pulaski, Georgia. Trends from the data show that coastal flooding is occurring more frequently with time at both tide gauges, particularly over the last five to ten years. Because of the increased frequency and worsening impacts of tidal flooding, a tide forecast tool is implemented operationally in an effort to improve deterministic tide forecasts. This study extends the dataset used in the Charleston Harbor forecast tool, expands the tool to Fort Pulaski, and compares the synoptic category forecast equations to an all-inclusive equation that does not differentiate by synoptic category. Results show that there is virtually no difference in the forecast accuracy between the all-inclusive forecast equation and the specific forecast equations based on synoptic category. Furthermore, the all-inclusive forecast equation can be implemented operationally, will help improve deterministic tide forecasts, and will likely aid in the decision-making process for Coastal Flood Watches, Warnings, and Advisories issued by the National Weather Service office in Charleston, South Carolina.


2021 ◽  
Vol 193 (12) ◽  
Author(s):  
Oluwatola Adedeji ◽  
Adeyemi Olusola ◽  
Rakiya Babamaaji ◽  
Samuel Adelabu
Keyword(s):  

SOIL ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 743-766
Author(s):  
Virginie Sellier ◽  
Oldrich Navratil ◽  
John Patrick Laceby ◽  
Cédric Legout ◽  
Anthony Foucher ◽  
...  

Abstract. Tracing the origin of sediment is needed to improve our knowledge of hydro-sedimentary dynamics at the catchment scale. Several fingerprinting approaches have been developed to provide this crucial information. In particular, spectroscopy provides a rapid, inexpensive and non-destructive alternative technique to the conventional analysis of the geochemical properties. Here, we investigated the performance of four multi-proxy approaches based on (1) colour parameters, (2) geochemical properties, (3) colour parameters coupled with geochemical properties and (4) the entire visible spectrum to discriminate sediment source contributions in a mining catchment of New Caledonia. This French archipelago located in the south-west Pacific Ocean is the world's sixth largest producer of nickel. Open-cast nickel mining increases soil degradation and the downstream transfer of sediments in river systems, leading to the river system siltation. The sediment sources considered in the current research were therefore sediment eroded from mining sub-catchments and non-mining sub-catchments. To this end, sediment deposited during two cyclonic events (i.e. 2015 and 2017) was collected following a tributary design approach in one of the first areas exploited for nickel mining on the archipelago, the Thio River catchment (397 km2). Source (n=24) and river sediment (n=19) samples were analysed by X-ray fluorescence and spectroscopy in the visible spectra (i.e. 365–735 nm). The results demonstrated that the individual sediment tracing methods based on spectroscopy measurements (i.e. (1) and (4)) were not able to discriminate sources. In contrast, the geochemical approach (2) did discriminate sources, with 83.1 % of variance in sources explained. However, it is the inclusion of colour properties in addition to geochemical parameters (3) which provides the strongest discrimination between sources, with 92.6 % of source variance explained. For each of these approaches ((2) and (3)), the associated fingerprinting properties were used in an optimized mixing model. The predictive performance of the models was validated through tests with artificial mixture samples, i.e. where the proportions of the sources were known beforehand. Although with a slightly lower discrimination potential, the “geochemistry” model (2) provided similar predictions of sediment contributions to those obtained with the coupled “colour + geochemistry” model (3). Indeed, the geochemistry model (2) showed that mining tributary contributions dominated the sediments inputs, with a mean contribution of 68 ± 25 % for the 2015 flood event, whereas the colour + geochemistry model (3) estimated that the mining tributaries contributed 65 ± 27 %. In a similar way, the contributions of mining tributaries were evaluated to 83 ± 8 % by the geochemistry model (2) versus 88 ± 8 % by the colour + geochemistry model (3) for the 2017 flood event. Therefore, the use of these approaches based on geochemical properties only (2) or of those coupled to colour parameters (3) was shown to improve source discrimination and to reduce uncertainties associated with sediment source apportionment. These techniques could be extended to other mining catchments of New Caledonia but also to other similar nickel mining areas around the world.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3254
Author(s):  
Stanisław Kostecki ◽  
Robert Banasiak

Due to extreme rainfall in 2010 in the Lusatian Neisse River catchment area (in Poland), a flood event with a return period of over 100 years occurred, leading to the failure of the Niedów dam. The earth-type dam constructed for cooling the Turów power plant was washed away, resulting in the rapid release of nearly 8.5 million m3 of water and the flooding of the downstream area with substantial material losses. Here we analyze the conditions and causes of the dam’s failure, with special attention given to the mechanism and dynamics of the compound breaching process, in which the dam’s upstream slope reinforcement played a specific and remarkable role. The paper also describes a numerical approach for simulating a combined flood event downstream from the dam with the use of a two-dimensional hydrodynamic model (MIKE21). Considering the specific local conditions, i.e., wide floodplain, meandering character of the main channel, embankment overtopping, and available data set, an iterative solution of the unsteady state problem is proposed. This approach enables realistic flood propagation estimates to be delivered, the dam breach outflow to be reconstructed, and several important answers concerning the consequences of the dam’s failure to be provided. Finally, the paper presents the reconstruction of the dam that is more resilient to extreme hydrological conditions under changing climate.


2021 ◽  
Vol 903 (1) ◽  
pp. 012006
Author(s):  
Gianoora Achmad ◽  
Kemas Ridwan Kurniawan

Abstract Located in Tambora, West Jakarta, Kampung Pekojan has an essential role as a part of historical stories back to the colonialism era in Batavia, now known as Jakarta. As the residential area of Muslim for the Arabs, The Indian, and the indigenous people, Pekojan has six cultural heritage mosques, one of them is Langgar Tinggi. However, the yearly flood event eventually become a problem and it endangered Langgar Tinggi and its surrounding. Using descriptive qualitative methods by collecting data which includes literature studies, interviews with the experts, this paper is expected to provide the necessary information and data about how to handle a flood event around Kampung Pekojan and save Langgar Tinggi mosque as an important cultural heritage and a place that holds history.


Sign in / Sign up

Export Citation Format

Share Document