Optimised design of permanent magnet assisted synchronous reluctance motor series using combined analytical–finite element analysis based approach

2016 ◽  
Vol 10 (5) ◽  
pp. 330-338 ◽  
Author(s):  
Stjepan Stipetic ◽  
Damir Zarko ◽  
Marinko Kovacic
Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 384 ◽  
Author(s):  
Hyunwoo Kim ◽  
Yeji Park ◽  
Huai-Cong Liu ◽  
Pil-Wan Han ◽  
Ju Lee

In order to improve the efficiency, a line-start synchronous reluctance motor (LS-SynRM) is studied as an alternative to an induction motor (IM). However, because of the saliency characteristic of SynRM, LS-SynRM have a limited power factor. Therefore, to improve the efficiency and power factor of electric motors, we propose a line-start permanent magnet assistance synchronous reluctance motor (LS-PMA-SynRM) with permanent magnets inserted into LS-SynRM. IM and LS-SynRM are selected as reference models, whose performances are analyzed and compared with that of LS-PMA-SynRM using a finite element analysis. The performance of LS-PMA-SynRM is analyzed considering the position and length of its permanent magnet, as well as its manufacture. The final model of LS-PMA-SynRM is designed for improving the efficiency and power factor of electric motors compared with LS-SynRM. To verify the finite element analysis (FEA) result, the final model is manufactured, experiments are conducted, and the performance of LS-PMA-SynRM is verified.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2311
Author(s):  
Mudassir Raza Siddiqi ◽  
Tanveer Yazdan ◽  
Jun-Hyuk Im ◽  
Muhammad Humza ◽  
Jin Hur

This paper presents a novel topology of dual airgap radial flux permanent magnet vernier machine (PMVM) in order to obtain a higher torque per magnet volume and similar average torque compared to a conventional PMVM machine. The proposed machine contains two stators and a sandwiched yokeless rotor. The yokeless rotor helps to reduce the magnet volume by providing an effective flux linkage in the stator windings. This effective flux linkage improved the average torque of the proposed machine. The competitiveness of the proposed vernier machine was validated using 2D finite element analysis under the same machine volume as that of conventional vernier machine. Moreover, cogging torque, torque ripples, torque density, losses, and efficiency performances also favored the proposed topology.


Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 81
Author(s):  
Atif Zahid ◽  
Faisal Khan ◽  
Naseer Ahmad ◽  
Irfan Sami ◽  
Wasiq Ullah ◽  
...  

A dual mover yokeless multi-tooth (DMYMT) permanent magnet flux switching motor (PM-FSM) design is presented in this article for ropeless elevator applications. The excitation sources, including a field winding and permanent magnet, are on the short mover in the proposed design structure, whereas the stator is a simple slotted iron core, thus reducing the vertical transportation system cost. The operational principle of the proposed DMYMT in PM-FSM is introduced. The proposed dual mover yokeless multi-tooth Permanent Magnet Flux Switching Motor is analyzed and compared for various performance parameters in a Finite Element Analysis package. The proposed machine has high thrust force and cost-effectiveness compared to conventional dual permanent magnet motor. Finally, this paper also develops an analytical model for the proposed structure, validated by comparing it with Finite Element Analysis simulation results. Results show good agreement between analytical prediction and Finite Element Analysis results.


Sign in / Sign up

Export Citation Format

Share Document