rotor cage
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 22)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 11673
Author(s):  
Un-Jae Seo ◽  
Dong-Jun Kim ◽  
Pil-Wan Han ◽  
Yon-Do Chun

Since line-start synchronous permanent magnet motors (LSPMs) entered the market, they have attracted research interest toward counterpart induction motors of low power-ratings. This paper reports an investigation of line-start synchronous reluctance motors (LS-SynRMs). LS-SynRMs has not been investigated as much as LSPMs have. A motor needs to maximize rotor saliency to achieve high efficiency and a high power-factor. This results in complicated rotor geometry because the rotor cage and multiple flux barriers share the same rotor space. This paper provides an approximate method based on steady state torque analysis by which to estimate the critical inertia of a LS-SynRM. A finite element analysis (FEA)-aided analytical approach to the approximation of steady state torque is proposed to replace the more typical approach based on equivalent circuit parameters. The critical inertia resulting from the proposed method is compared to the results obtained using the FEA.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7130
Author(s):  
Marcel Torrent ◽  
Balduí Blanqué

This work shows the results obtained from studying the influence of equivalent circuit resistances on three-phase induction motors. The stator resistance, rotor resistance, and iron losses resistance affect the different motor operating variables (output power, current, speed, power factor, starting ratios, and maximum torque). These influences have been quantified, paying particular attention to the losses affected and their impact on efficiency. The study carried out does not apply optimization techniques. It evaluates the different influences of the equivalent circuit’s different resistances on its operation by evaluating applicable constructive modifications concerning available motors. The work has been limited to three-phase induction motors up to 50 kW and low voltage, with the nominal powers of the selected motors being 0.25 kW, 1.5 kW, 7.5 kW, 22 kW, and 45 kW. The tools used to carry out the study are analyzing the equivalent circuit and the simulation of the electromagnetic structure using a finite-element program. The variations proposed in each resistance for all the motors studied is not purely theoretical, as it is based on applying feasible constructive modifications, appropriately analyzed and simulated. These modifications are the variation of the conductor diameter in the stator coils, the change of the section of the rotor cage, and the selection of different ferromagnetic steel types.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6825
Author(s):  
Paweł Idziak ◽  
Krzysztof Kowalski

The article presents the results of work on an effective numerical study of selected transient states of a low-power electrical machine. The object of detailed research was a synchronized squirrel-cage induction motor. Its ability to work at a synchronous speed was enabled by obtaining reluctance torque, caused by an imposed asymmetry between the direct and quadrature reluctances of the rotor. The difference between the reluctances was achieved by changing the rotor geometry by milling additional deep grooves. The modifications of the rotor did not damage the continuity of the rotor cage. Imposed lots were arranged symmetrically around the rotor circumference. In order to study the performance of the modified motor, a parameterized, numerical model of the machine was developed to evaluate the impact of the geometry of the slots. The developed three dimensional (3D) model of the electromagnetic phenomena in the studied magnetic circuit employs the finite element method (FEM). The model takes into account the saturation of the machine’s magnetic circuit and the skew of the rotor cage bars as well as the mechanical equilibrium of the terrain system including the moment of inertia and frictional torque in the bearings as well as the load torque resulting from the operation of the internal fan. The simulation study concerned the starting process of the machine under different values of the load. The influence of the supply voltage phase angle at the moment of start-up and the initial position of the rotor in relation to the stator was investigated. In order to calibrate the model, tests of the physical object were performed. The corrections introduced concerned the magnetization characteristics of the magnetic circuit. The results obtained confirm the correctness of the adopted strategy of testing the operational properties of the considered engine.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5692
Author(s):  
Andriy Chaban ◽  
Zbigniew Łukasik ◽  
Andrzej Popenda ◽  
Andrzej Szafraniec

Beginning with the classic methods, a mathematical model of an electromechanical system is developed that consists of a deep bar cage induction motor that, via a complex motion transmission with distributed mechanical parameters, drives a working machine, loading the drive system with a constant torque. The electromagnetic field theory serves to create the motor model, which allows addressing the displacement of current in the rotor cage bars. Ordinary and partial differential equations are used to describe the electromechanical processes of energy conversion in the motor. The complex transmission of the drive motion consists of a long shaft with variable geometry cardan joints mounted on its ends. Non-linear electromechanical differential equations are presented as a system of ordinary differential equations combined with a mixed problem of Dirichlet first-type and Poincaré third-type boundary conditions. This system of equations is integrated by discretising partial derivatives by means of the straight-line methods and successive integration as a function of time using the Runge–Kutta fourth-order method. Starting from there, complicated transient processes in the drive system are analysed. Results of computer simulations are presented in the graphic form, which is analysed.


Author(s):  
Sang Bin Lee ◽  
Jaehoon Shin ◽  
Yonghyun Park ◽  
Heonyoung Kim ◽  
Jongwan Kim
Keyword(s):  

2021 ◽  
Vol 52 (7) ◽  
pp. 772-780
Author(s):  
Y. Yu ◽  
X. Kong ◽  
C. Ren ◽  
J. Liu ◽  
J. Liu
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1148
Author(s):  
Xinliang Mou ◽  
Fangchao Jia ◽  
Ying Fang ◽  
Chuanwen Chen

Due to the uneven materials dispersion and high dust concentration in industrial applications of turbo air classifiers, a high-efficiency rotor classifier was designed. Numerical simulations by ANSYS-Fluent 19.0, the effects of rotor cage shape, the number of blades, and the blade profile on the inner flow field, as well as classification performance, were investigated. The simulation results indicated a significant improvement in flow field distribution near the classification surface with the conical rotor cage. Furthermore, there was an average reduction of 10.1% in cut size, as well as a 23.6% increase in classification accuracy. When the number of blades was 36, the flow field distribution between the blades was relatively uniform and a smaller cut size was obtained at a higher classification accuracy. A streamline blade with 52° as the inlet installation angle effectively reduced the impact of the airflow on the blade and eliminated the inertia anti-vortex between blades. The cut size reduction was 4.7–6.3%, with a basically unchanged classification accuracy. The material classification experimental results were in agreement with the simulated results. The discrete phase model (DPM) could well-predict the cut sizes and classification accuracy, but it could not present the fishhook effect. The present study provides theoretical guidance for the structural optimization of an air classifier with a rotor cage.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1033
Author(s):  
Fangchao Jia ◽  
Xinliang Mou ◽  
Ying Fang ◽  
Chuanwen Chen

Due to the inadequate pre-dispersion and high dust concentration in the grading zone of the turbo air classifier, a new rotor-type dynamic classifier with air and material entering from the bottom was designed. The effect of the rotor cage structure and diversion cone size on the flow field and classification performance of the laboratory-scale classifier was comparatively analyzed by numerical simulation using ANSYS-Fluent. The grinding process performance with an industrial classifier was also tested on-site. The results revealed that an inverted cone-type rotor cage is more suitable for the under-feed classifier. When the rotor cage’s top-surface diameter to bottom-surface diameter ratio was too large or too small, the radial velocity and tangential velocity at the outer surface of the rotor cage greatly fluctuated. Furthermore, the diameter of the diversion cone also affected the axial velocity and radial velocity of the flow field. Models T-C(1-0.8) and T-D(1-0.7) were determined as the best rotor cage structures. Under stable operating conditions, the classification efficiency of the industrial classifier was 87% and the sharpness of separation was 0.58, which meet the industrial requirements for classification efficiency and energy consumption. This present study provides theoretical guidance and engineering application value for air classifiers.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6528
Author(s):  
Arkadiusz Duda ◽  
Piotr Drozdowski

This paper presents some considerations regarding the application of the stator zero-sequence current component (ZSC) in the fault detection of cage induction machines, including the effects of magnetic core saturation. Faults such as rotor cage asymmetry and static, dynamic, and mixed eccentricity were considered. The research started by developing a harmonic motor model, which allowed us to obtain a voltage equation for the zero-sequence current component. The equation allowed us to extract formulas of typical frequencies for particular fault types. Next, in order to verify the effectiveness of ZSC in induction motor fault diagnosis, finite element calculations and laboratory tests were carried out for the previously mentioned faults for delta and wye connections with neutral wire stator winding configurations.


Sign in / Sign up

Export Citation Format

Share Document