Probabilistic evaluation of long-duration voltage variations in distribution networks with wind power plants

2015 ◽  
Vol 9 (13) ◽  
pp. 1526-1533 ◽  
Author(s):  
Antonio Cardoso da Silva ◽  
Anselmo Barbosa Rodrigues ◽  
Maria da Guia da Silva
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2293
Author(s):  
Santosh Ghimire ◽  
Seyed Morteza Alizadeh

The interconnection of wind power plants (WPPs) with distribution networks has posed many challenges concerned with voltage stability at the point of common coupling (PCC). In a distribution network connected WPP, the short-circuit ratio (SCR) and impedance angle ratio seen at PCC (X/RPCC) are the most important parameters, which affect the PCC voltage (VPCC) stability. Hence, design engineers need to conduct the WPP siting and sizing assessment considering the SCR and X/RPCC seen at each potential PCC site to ensure that the voltage stability requirements defined by grid codes are provided. In various literature works, optimal siting and sizing of distributed generation in distribution networks (DG) has been carried out using analytical, numerical, and heuristics approaches. The majority of these methods require performing computational tasks or simulate the whole distribution network, which is complex and time-consuming. In addition, other works proposed to simplify the WPP siting and sizing have limited accuracy. To address the aforementioned issues, in this paper, a decision tree algorithm-based model was developed for WPP siting and sizing in distribution networks. The proposed model eliminates the need to simulate the whole system and provides a higher accuracy compared to the similar previous works. For this purpose, the model accurately predicts key voltage stability criteria at a given interconnection point, including VPCC profile and maximum permissible wind power generation, using the SCR and X/RPCC values seen at that point. The results confirmed the proposed model provides a noticeable high accuracy in predicting the voltage stability criteria under various validation scenarios considered.


Author(s):  
Yu. Kozlov ◽  
R. Serebryakov

A new coronavirus pandemic is raging all over the world, especially in densely populated areas. Unlike most countries, more than half of the territory of Russia is not used by humans — which means that it is possible to settle large cities to avoid crowding people on a small area. The authors of the article consider wind power, namely vortex wind power plants, as a new source of energy that can be quickly and with less harm built in rural areas. The article also discusses the possibilities of an alternative Autonomous non-volatile installation "Air spring" for obtaining fresh water from atmospheric air.


Sign in / Sign up

Export Citation Format

Share Document