Homotopy-enhanced short-circuit calculation for general distribution networks with non-linear loads

2016 ◽  
Vol 10 (1) ◽  
pp. 154-163 ◽  
Author(s):  
Pan Liu ◽  
Hsiao-Dong Chiang
Energies ◽  
2016 ◽  
Vol 9 (4) ◽  
pp. 277 ◽  
Author(s):  
Niancheng Zhou ◽  
Fan Ye ◽  
Qianggang Wang ◽  
Xiaoxuan Lou ◽  
Yuxiang Zhang

2022 ◽  
Author(s):  
Evangelos Pompodakis

In this manuscript, a novel Δ-circuit approach is proposed, which enables the fast calculation of fault currents in large islanded AC microgrids (MGs), supplied by inverter-based distributed generators (IBDGs) with virtual impedance current limiters (VICLs). The concept of virtual impedance for limiting the fault current of IBDGs has gained the interest of research community in the recent years, due to the strong advantages it offers. Moreover, Δ-circuit is an efficient approach, which has been widely applied in the past, for the calculation of short?circuit currents of transmission and distribution networks. However, the traditional Δ-circuit, in its current form, is not applicable in islanded MGs, due to the particular characteristics of such networks, e.g., the absence of a slack bus. To overcome this issue, a novel Δ-circuit approach is proposed in this paper, with the following distinct features: a) precise simulation of islanded MGs, b) fast computational performance, c) generic applicability in all types of faults e.g., single-line, 2-line or 3-line faults, d) simple extension to other DG current limiting modes, e.g., latched limit strategy etc. The proposed approach is validated through the time-domain software of Matlab Simulink, in a 9-bus and 13-bus islanded MG. The computational performance of the proposed fault analysis method is further tested in a modified islanded version of the IEEE 8500-node network.


2022 ◽  
Author(s):  
Evangelos Pompodakis

In this manuscript, a novel Δ-circuit approach is proposed, which enables the fast calculation of fault currents in large islanded AC microgrids (MGs), supplied by inverter-based distributed generators (IBDGs) with virtual impedance current limiters (VICLs). The concept of virtual impedance for limiting the fault current of IBDGs has gained the interest of research community in the recent years, due to the strong advantages it offers. Moreover, Δ-circuit is an efficient approach, which has been widely applied in the past, for the calculation of short?circuit currents of transmission and distribution networks. However, the traditional Δ-circuit, in its current form, is not applicable in islanded MGs, due to the particular characteristics of such networks, e.g., the absence of a slack bus. To overcome this issue, a novel Δ-circuit approach is proposed in this paper, with the following distinct features: a) precise simulation of islanded MGs, b) fast computational performance, c) generic applicability in all types of faults e.g., single-line, 2-line or 3-line faults, d) simple extension to other DG current limiting modes, e.g., latched limit strategy etc. The proposed approach is validated through the time-domain software of Matlab Simulink, in a 9-bus and 13-bus islanded MG. The computational performance of the proposed fault analysis method is further tested in a modified islanded version of the IEEE 8500-node network.


Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


Author(s):  
Aly-Joy Ulusoy ◽  
Filippo Pecci ◽  
Ivan Stoianov

AbstractThis manuscript investigates the design-for-control (DfC) problem of minimizing pressure induced leakage and maximizing resilience in existing water distribution networks. The problem consists in simultaneously selecting locations for the installation of new valves and/or pipes, and optimizing valve control settings. This results in a challenging optimization problem belonging to the class of non-convex bi-objective mixed-integer non-linear programs (BOMINLP). In this manuscript, we propose and investigate a method to approximate the non-dominated set of the DfC problem with guarantees of global non-dominance. The BOMINLP is first scalarized using the method of $$\epsilon $$ ϵ -constraints. Feasible solutions with global optimality bounds are then computed for the resulting sequence of single-objective mixed-integer non-linear programs, using a tailored spatial branch-and-bound (sBB) method. In particular, we propose an equivalent reformulation of the non-linear resilience objective function to enable the computation of global optimality bounds. We show that our approach returns a set of potentially non-dominated solutions along with guarantees of their non-dominance in the form of a superset of the true non-dominated set of the BOMINLP. Finally, we evaluate the method on two case study networks and show that the tailored sBB method outperforms state-of-the-art global optimization solvers.


TEM Journal ◽  
2021 ◽  
pp. 1525-1533
Author(s):  
Allen A. Castillo ◽  
M. Natalia Galván Osuna ◽  
Norma A. Barboza Tello ◽  
Alejandra J. Vega

Teaching short-circuit analysis is conducted primarily through case studies; however, there are not many validated short-circuit studies available on the subject, especially when considering off-nominal turns ratio transformers. In order to improve the teaching of short-circuit analysis, a three phase short-circuit study in an industrial system according to ANSI/IEEE standards by means of Zmatrix method is presented; two case studies are considered: the industrial system with nominal and offnominal turns ratio transformers, in both cases the step by step solution is given in an explicit manner and the analytical results are validated through software simulation.


2021 ◽  
Vol 24 (1) ◽  
pp. 91-96
Author(s):  
V. N. Krysanov ◽  
◽  
V. L. Burkovskii ◽  
I. A. Khaychenko ◽  
◽  
...  

The article considers topical issues in development of energysaving technologies to optimize the control of distribution networks according to the criterion of minimum power losses. The technology consists in introducing new hardware to control the modes based on static devices. Based on the analysis of the existing hardware created to control the modes of distributio networks, the developed circuitry solutions of the power part and the control system of the multifunctional thyristor voltage transformer and hybrid thyristor capacitor are proposed. Their main technical characteristics and ways to reduce voltage asymmetry, limiting short circuit currents and regulating reactive power are det ermined. The use of software and hardware solutions was recommended for a wide range of energy conservation tasks, both in the electric power sector and at the level of industrial facilities


Sign in / Sign up

Export Citation Format

Share Document