Research on a current commutation drive circuit for hybrid dc circuit breaker and its optimisation design

2016 ◽  
Vol 10 (13) ◽  
pp. 3119-3126 ◽  
Author(s):  
Weijie Wen ◽  
Yulong Huang ◽  
Tiehan Cheng ◽  
Shutong Gao ◽  
Zhengyu Chen ◽  
...  
2021 ◽  
Vol 256 ◽  
pp. 01020
Author(s):  
Chunbing Jiang ◽  
Chengyong Zhao

DC faults are critical events in a flexible high-voltage dc (HVDC) grid. Thus, ensuring that the power system returns to normal operation rapidly and reliably after fault isolation is very important. This requires a HVDC breaker. In overhead line systems under temporary faults, reclosing is often required. However, once the dc circuit breaker (DCCB) is reclosed directly, the large second overcurrent may occur which could damage the power electronic devices. To avoid this problem, a current-commutation DC circuit breaker with adaptive reclosing capability is proposed. Compared with the traditional auto-reclosing strategy, the second damage under permanent fault condition can be avoided by the proposed DCCB, which can identify the fault property. Compared with the hybrid DCCB, the power electronic breaking branch composed of lots of IGBTs is replaced by the current-commutation branch, which is employed to interrupt bi-directional dc fault current. Moreover, bypassing branch is configured to reduce the energy dissipation of arrester and shorten the fault isolation time effectively. Finally, simulation cases in PSCAD /EMTDC verify the effectiveness and superiorities of the proposed DCCB.


Designs ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 28
Author(s):  
Hyosung Kim

The medium voltage DC (MVDC) type system can connect multiple terminals to a common MVDC bus, so it is possible to connect several renewable DC power sources to the common MVDC bus, but a DC circuit breaker is needed to isolate short circuit accidents that may occur in the MVDC bus. For this purpose, the concept of a hybrid DC circuit breaker that takes advantage of a low conduction loss contact type switch and an arcless-breaking semiconductor switch has been proposed. During break the hybrid switch, a dedicated current commutation device is required to temporarily bypass the load current flowing through the main switch into a semiconductor switch branch. Existing current commutation methods include a proactive method and a reverse current injection method by a LC (Inductor-capacitor) resonant circuit. This paper proposes a power circuit of a new MVDC hybrid circuit breaker using a low withstanding voltage capacitor branch for commutation and a sequence controller according to it, and verifies its operation through an experiment.


2014 ◽  
Vol 556-562 ◽  
pp. 1959-1963
Author(s):  
Si Ming Wei ◽  
Yi Gong Zhang ◽  
Huan Liu ◽  
Zhi Qiang Dai ◽  
Xiao Du

It is great significance for development of MTDC (Multi-terminal HVDC) to build DC transmission and distribution grids. However, the relatively low impedance in DC grids makes the fault penetration much faster and deeper .Consequently, fast and reliable DC circuit breaker is needed to isolate faults. Breaking time and other parameters are important for a breaker to achieve its goals. This paper presents a DC circuit breaker with a current-limiting inductance and gets the rising and falling characteristics of fault current. Based on the characteristics, a design method of breaking time sequence will be given, as well as the calculation of current-limiting inductance and the selection principles of arresters. A 10kV DC distribution grid is modeled and simulated by PSCAD/EMTDC to verify that the method can meet the requirements of breaking fault current quickly and reliably.


Sign in / Sign up

Export Citation Format

Share Document