resonant circuit
Recently Published Documents


TOTAL DOCUMENTS

448
(FIVE YEARS 112)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Zein Alabidin Shami ◽  
Christophe Giraud-Audine ◽  
Olivier Thomas

Abstract An experimental proof of concept of a new semi-passive nonlinear piezoelectric shunt absorber, introduced theoretically in a companion article, is presented in this work. This absorber is obtained by connecting, through a piezoelectric transducer, an elastic structure to a resonant circuit that includes a quadratic nonlinearity. This nonlinearity is obtained by including in the circuit a voltage source proportional to the square of the voltage across the piezoelectric transducer, thanks to an analog multiplier circuit. Then, by tuning the electric resonance of the circuit to half the value of one of the resonances of the elastic structure, a two-to-one internal resonance is at hand. As a result, a strong energy transfer occurs from the mechanical mode to be attenuated to the electrical mode of the shunt, leading to two essential features: a nonlinear antiresonance in place of the mechanical resonance and an amplitude saturation. Namely, the amplitude of the elastic structure oscillations at the antiresonance becomes, above a given threshold, independent of the forcing level, contrary to a classical linear resonant shunt. This paper presents the experimental setup, the designed nonlinear shunt circuit and the main experimental results.


2021 ◽  
Vol 14 (1) ◽  
pp. 377
Author(s):  
Mouncif Arazi ◽  
Alireza Payman ◽  
Mamadou Baïlo Camara ◽  
Brayima Dakyo

In this paper, a bidirectional zero voltage switching (ZVS) resonant converter with narrow control frequency deviation is proposed. Wide input–output voltage range applications, such as flywheel or supercapacitors storage units are targeted. Due to symmetrical topology of resonant circuit interfaces, the proposed converter has similar behavior in bidirectional operating mode. We call it Dual Active Bridge Converter (DABC). The proposal topology of the converter is subjected to multi resonant circuits which make it necessary to study with multiscale approaches. Thus, first harmonic approximation and use of selective per unit parameters are established in (2) Methods. Then, the forward direction and backward direction of power flux exchange are detailed according to switching sequences. Switching frequency control must be completed within a narrow range. So, the frequency range deterministic parameters are emphasized in the design procedure in (3) Methods. A narrow range of switching frequency and a wide range voltage control must be ensured to suit for energy storage units, power electronic devices capabilities and electromagnetic compatibility. A 3 kW test bench is used to validate operation principles and to proof success of the developed design procedure. The interest of proposed converter is compared to other solutions from the literature in (4) Results.


2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Arslan Arif ◽  
Junaid Arshad ◽  
Shahid Iqbal

Technological advancements in solar power systems necessitate highly reliable power inverters with a high efficiency and a small size. An LLC resonant converter-based pseudo Direct Current (DC) link inverters offer these qualities to some extent. The resonant circuits of conventional pseudo DC link inverters lack the ability to attain a zero gain and cannot handle variable frequency control which in turn requires very large filters to produce pure sinusoidal output voltages for grid. The usage of these filters consequences in the enhanced price and size of inverters; moreover, the reliability of inverters is also reduced. We propose a novel topology for a pseudo DC link inverter based on an LLCLC resonant converter. The proposed inverter does not require large filters, because it generates rectified sinusoidal output voltages. An additional parallel LC component is added in series to the resonant circuit, which makes it able to attain a zero gain through an infinite circuit impedance. The 400 W pseudo DC link inverter with a 40 V input and a 400 V output is designed and simulated on OrCAD PSpice software. The results showed that there is a significant improvement in achieving a zero gain. The possible lowest gain achieved is approximately 0.125. The proposed technique attested to be more efficient than those formerly used, subsequently contributing satisfying outcomes.


2021 ◽  
Vol 19 ◽  
pp. 9-15
Author(s):  
Maik Rogowski ◽  
Sven Fisahn ◽  
Heyno Garbe

Abstract. EMC measurements must be carried out in standardized and defined measuring environments. The frequency range between 9 kHz and 30 MHz is a major challenge for measurement technology. The established test sites are designed with an perfect elelctrically conducting ground. For the considered lower frequency range, the metrological validation is carried out with magnetic field antennas in this frequency range. The aim is therefore to take into account the ferromagnetic properties of the ground plane in such a measurement environment and to describe them analytically or numerically with an electrical equivalent circuit diagram. In this article we simplify the model to two loopantennas in Freespace without groundplane to check if the approache with the ECD will work. Therefore we use various numerical field calculation programs in the frequency range up to 30 MHz. The results from simulations are to be checked for correctness with describing them analytically or numerically. For this purpose, a model consisting of two loop antennas was created and simulated in a numerical simulation program. In order to validate the results from the simulation, two different approaches to creating an electrical equivalent circuit (ECD) are examined. The first approach is based on the real equivalent circuit diagram of a coil and the second approach forms a parallel resonant circuit of the first resonance of an antennas input impedance. The focus here is on the mutual inductance, which represents the coupling between the two antennas.


Author(s):  
Dmytro Vinnychenko ◽  
Natalia Nazarova ◽  
Iryna Vinnychenko

The calculated dependences for determining the deviation of the output current of the resonant power supply of the materials pulsed processing system from a given stabilized value are obtained. The inversely proportional dependence of the output current on the frequency at the input of the series resonant circuit is obtained. These dependencies can be applied for the frequency control of the inverter’s switches commutation which stabilizes the RMS value of the output current. At the close to short circuit modes, the deviation of the output current from the stabilized value does not exceed 2%, and therefore it can be ignored.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012107
Author(s):  
V A Gerasimov ◽  
A V Komlev ◽  
A Yu Filozhenko

Abstract A special feature of the contactless battery charging system of an autonomous underwater robot is the use of a transformer with separating primary and secondary windings. As a result, a non-magnetic gap arises, which leads to the need to increase the primary current and the output current of the autonomous inverter. One of the ways to improve the quality of the system is the use of a resonant circuit at the inverter output in combination with the "soft switching" mode of its power switches. The use of resonance on the transformer secondary side also allows you to equalize the current loads of the primary and secondary windings. In this way, a minimum of losses in the inverter is achieved and the power transformer of the system is optimized. This allows you to reduce the size of the system while maintaining the transmitted power, or increase the transmitted power while maintaining the dimensions. The problem solved by using mathematical modelling with verification of the solution adequacy in a full-scale experiment.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012023
Author(s):  
Ziyi Liu ◽  
Hao Zhan

Abstract A tuning control method with frequency tracking function is proposed to improve the degradation of efficiency caused by coil detuning in magnetically-coupled resonant wireless power transfer. Firstly, the detuning mechanism is studied by combining the AC impedance characteristics of the series resonant circuit, and the feedback control circuit is constructed by using a modified phase-locked loop, which outputs a variable frequency PWM wave to regulate the operating frequency of the high frequency inverter and maintains the phase difference between the inverter output voltage and the original side current within the error range. The Matlab/Simulink simulation results show that the design can successfully transfer the system to a new resonant state with short regulation period and high control accuracy, which can effectively improve the transmission efficiency and load power of the system.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012035
Author(s):  
Zhengnan Yuan ◽  
Pengcheng Fu ◽  
Guangshuai Lu ◽  
Pengfei Cao

Abstract System detuning caused by a variation in the distance between the transmitting and receiving terminals can greatly reduce the transmission power and efficiency of a magnetic resonance-coupled wireless power transmission (WPT) system, which limits the WPT application scope. This paper proposes a magnetic resonance coupling wireless power transmission system, which is based on jointly and continuously adjustable frequency compensation (CAFC) and two-transistor-controlled variable capacitor circuits (TCVCs). Therefore, this system can reach the resonant state by using CAFC and two-TCVCs when the transmission distance is changed. The proposed system can adaptively adjust combinations of the operating frequency and equivalent compensation capacitor’s capacitance to achieve impedance matching avoiding the phase difference caused by the imaginary part of the impedance, thus maintaining stable transmission efficiency under the condition of transmission distance variation. Compared to the traditional magnetic coupled resonant circuit based on impedance matching or variable resonant frequency, the proposed system achieves higher efficiency and stability and dynamic distance adaptation.


2021 ◽  
Vol 11 (21) ◽  
pp. 10211
Author(s):  
Bor-Ren Lin ◽  
Yue-Ying Zhuang

A new hybrid DC converter is proposed and implemented to have wide voltage variation operation and bidirectional power flow capability for photovoltaic power applications. The hybrid DC converter, including a half- or full-bridge resonant circuit, is adopted to realize the bidirectional power operation and low switching losses. To overcome the wide voltage variation problem (60 V–480 V) from photovoltaic panels due to sunlight intensity, the full-bridge structure or half-bridge structure resonant circuit is used in the presented converter to implement high or low voltage gain under a low or high input voltage condition. Using a pulse frequency modulation (PFM) scheme, the voltage transfer function of the resonant circuit is controlled to regulate the load voltage. Due to the symmetric circuit structures used on the primary and the secondary sides in the proposed converter, the bidirectional power flow can be achieved with the same circuit characteristics. Therefore, the proposed converter can be applied to battery stacks to achieve charger and discharger operations. Finally, a 400 W prototype is implemented, and the performance of the proposed hybrid DC converter is confirmed by the experiments.


2021 ◽  
Vol 11 (20) ◽  
pp. 9711
Author(s):  
Timofey Shevgunov ◽  
Oksana Guschina ◽  
Yury Kuznetsov

This paper proposes a cyclostationary based approach to power analysis carried out for electric circuits under arbitrary periodic excitation. Instantaneous power is considered to be a particular case of the two-dimensional cross correlation function (CCF) of the voltage across, and current through, an element in the electric circuit. The cyclostationary notation is used for deriving the frequency domain counterpart of CCF—voltage–current cross spectrum correlation function (CSCF). Not only does the latter exhibit the complete representation of voltage–current interaction in the element, but it can be systematically exploited for evaluating all commonly used power measures, including instantaneous power, in the form of Fourier series expansion. Simulation examples, which are given for the parallel resonant circuit excited by the periodic currents expressed as a finite sum of sinusoids and periodic train of pulses with distorted edges, numerically illustrate the components of voltage–current CSCF and the characteristics derived from it. In addition, the generalization of Tellegen’s theorem, suggested in the paper, leads to the immediate formulation of the power conservation law for each CSCF component separately.


Sign in / Sign up

Export Citation Format

Share Document