scholarly journals Two-stage market-based service restoration method in multi-MGs distribution networks

2019 ◽  
Vol 13 (23) ◽  
pp. 5375-5386 ◽  
Author(s):  
Seyed Hamidreza Alemohammad ◽  
Elaheh Mashhour ◽  
Hossein Farzin
2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Juan Wen ◽  
Xing Qu ◽  
Lin Jiang ◽  
Siyu Lin

Service restoration of distribution networks in contingency situations is one of the highly investigated and challenging problems. In the conventional service restoration method, utilities reconfigure the topological structure of the distribution networks to supply the consumer load demands. However, the advancements in renewable distributed generations define a new dimension for developing service restoration methodologies. This paper proposes a hierarchical service restoration mechanism for distribution networks in the presence of distributed generations and multiple faults. The service restoration problem is modeled as a complicated and hierarchical program. The objectives are to achieve the maximization of loads restored with minimization of switch operations while simultaneously satisfying grid operational constraints and ensuring a radial operation configuration. We present the service restoration mechanism, which includes the dynamic topology analysis, matching isolated islands with renewable distributed generations, network reconfiguration, and network optimization. A new code scheme that avoids feasible solutions is applied to generate candidate solutions to reduce the computational burden. We evaluate the proposed mechanism on the IEEE 33 and 69 systems and report on the collected results under multitype fault cases. The results demonstrate the importance of the available renewable distributed generations in the proposed mechanism. Moreover, simulation results verify that the proposed mechanism can obtain reasonable service restoration plans to achieve the maximization of loads restored and minimization of switching operations under different faults.


2021 ◽  
Vol 11 (9) ◽  
pp. 4169
Author(s):  
Hirotaka Takano ◽  
Junichi Murata ◽  
Kazuki Morishita ◽  
Hiroshi Asano

The recent growth in the penetration of photovoltaic generation systems (PVs) has brought new difficulties in the operating and planning of electric power distribution networks. This is because operators of the distribution networks normally cannot monitor or control the output of the PVs, which introduces additional uncertainty into the available information that operations must rely on. This paper focuses on the service restoration of the distribution networks, and the authors propose a problem framework and its solution method that finds the optimal restoration configuration under extensive PV installation. The service restoration problems have been formulated as combinatorial optimization problems. They do, however, require accurate information on load sections, which is impractical in distribution networks with extensively installed PVs. A combined framework of robust optimization and two-stage stochastic programming adopted in the proposed problem formulation enables us to deal with the PV-originated uncertainty using readily available information only. In addition, this problem framework can be treated by a traditional solution method with slight extensions. The validity of the authors’ proposal is verified through numerical simulations on a real-scale distribution network model and includes a discussion of their results.


2001 ◽  
Vol 59 (3) ◽  
pp. 185-195 ◽  
Author(s):  
Antonino Augugliaro ◽  
Luigi Dusonchet ◽  
Eleonora Riva Sanseverino

2015 ◽  
Vol 737 ◽  
pp. 181-186
Author(s):  
Xiao Yun Huang ◽  
Fei Jin Peng ◽  
Hong Yuan Huang ◽  
Zhi Wen Xie

Abstract: On the condition of protecting the critical load, it is necessary to restore the service of outage area without fault as soon as possible after the occurrence of fault in smart distribution system. A fast service restoration method is proposed for medium-voltage distribution system with distributed generations, which combines intentional islanding of DGs for network reconfiguration. Under the condition of safety limits, the out of service areas are achieved maximization of restoration, making full use of DGs. The whole process of restoration is regarded as a multi-stages decision problem, and divided into four stages. Compared to the existing algorithms, this method can effectively avoid the time-consuming and search results problems, and the simulation results are better. The effectiveness and practicality of the propose approach is demonstrated by simulations on a PG&E 69-nodes system with DGs.


2020 ◽  
Vol 10 (7) ◽  
pp. 2564
Author(s):  
Liying Yan ◽  
Manel Grifoll ◽  
Pengjun Zheng

Taking cold-chain logistics as the research background and combining with the overall optimisation of logistics distribution networks, we develop two-stage distribution location-routing model with the minimum total cost as the objective function and varying vehicle capacity in different delivery stages. A hybrid genetic algorithm is designed based on coupling and collaboration of the two-stage routing and transfer stations. The validity and feasibility of the model and algorithm are verified by conducting a randomly generated test. The optimal solutions for different objective functions of two-stage distribution location-routing are compared and analysed. Results turn out that for different distribution objectives, different distribution schemes should be employed. Finally, we compare the two-stage distribution location-routing to single-stage vehicle routing problems. It is found that a two-stage distribution location-routing system is feasible and effective for the cold-chain logistics network, and can decrease distribution cost for cold-chain logistics enterprises.


Sign in / Sign up

Export Citation Format

Share Document