Design of an adaptive maximum likelihood estimator for key parameters in macroscopic traffic flow model based on expectation maximum algorithm

2011 ◽  
Vol 5 (5) ◽  
pp. 189-197 ◽  
Author(s):  
A. Ramezani ◽  
A. Rahimi Khan ◽  
B. Moshiri ◽  
B. Abdulhai
2019 ◽  
Vol 9 (14) ◽  
pp. 2848 ◽  
Author(s):  
Zawar H. Khan ◽  
Waheed Imran ◽  
Sajid Azeem ◽  
Khurram S. Khattak ◽  
T. Aaron Gulliver ◽  
...  

A new macroscopic traffic flow model is proposed, which considers driver presumption based on driver reaction and traffic stimuli. The Payne–Whitham (PW) model characterizes the traffic flow based on a velocity constant C 0 which results in unrealistic density and velocity behavior. Conversely, the proposed model characterizes traffic behavior with velocities based on the distance headway. The performance of the proposed and PW models is evaluated over a 300 m circular road for an inactive bottleneck. The results obtained show that the traffic behavior with the proposed model is more realistic.


2017 ◽  
Vol 31 (31) ◽  
pp. 1750291 ◽  
Author(s):  
Yu-Qing Wang ◽  
Xing-Jian Chu ◽  
Chao-Fan Zhou ◽  
Bin Jia ◽  
Sen Lin ◽  
...  

In this paper, a modified macroscopic traffic flow model is presented. The term of the density-dependent relaxation time is introduced here. The relation between the relaxation time and the density in traffic flow is presented quantitatively. Besides, a factor R depicting varied properties of traffic flow in different traffic states is also introduced in the formulation of the model. Furthermore, the evolvement law of traffic flow with distinctly initial density distribution and boundary perturbations is emphasized.


2021 ◽  
Author(s):  
Teodora A. Mecheva ◽  
Nikolay R. Kakanakov

Sign in / Sign up

Export Citation Format

Share Document