scholarly journals Macroscopic Traffic Flow Model based Dynamic Road Traffic Lights Management Framework

2015 ◽  
Vol 8 (1) ◽  
pp. 1-6
Author(s):  
Pardeep Mittal
2019 ◽  
Vol 9 (14) ◽  
pp. 2848 ◽  
Author(s):  
Zawar H. Khan ◽  
Waheed Imran ◽  
Sajid Azeem ◽  
Khurram S. Khattak ◽  
T. Aaron Gulliver ◽  
...  

A new macroscopic traffic flow model is proposed, which considers driver presumption based on driver reaction and traffic stimuli. The Payne–Whitham (PW) model characterizes the traffic flow based on a velocity constant C 0 which results in unrealistic density and velocity behavior. Conversely, the proposed model characterizes traffic behavior with velocities based on the distance headway. The performance of the proposed and PW models is evaluated over a 300 m circular road for an inactive bottleneck. The results obtained show that the traffic behavior with the proposed model is more realistic.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3425
Author(s):  
Huanping Li ◽  
Jian Wang ◽  
Guopeng Bai ◽  
Xiaowei Hu

In order to explore the changes that autonomous vehicles would bring to the current traffic system, we analyze the car-following behavior of different traffic scenarios based on an anti-collision theory and establish a traffic flow model with an arbitrary proportion (p) of autonomous vehicles. Using calculus and difference methods, a speed transformation model is established which could make the autonomous/human-driven vehicles maintain synchronized speed changes. Based on multi-hydrodynamic theory, a mixed traffic flow model capable of numerical calculation is established to predict the changes in traffic flow under different proportions of autonomous vehicles, then obtain the redistribution characteristics of traffic flow. Results show that the reaction time of autonomous vehicles has a decisive influence on traffic capacity; the q-k curve for mixed human/autonomous traffic remains in the region between the q-k curves for 100% human and 100% autonomous traffic; the participation of autonomous vehicles won’t bring essential changes to road traffic parameters; the speed-following transformation model minimizes the safety distance and provides a reference for the bottom program design of autonomous vehicles. In general, the research could not only optimize the stability of transportation system operation but also save road resources.


2017 ◽  
Vol 31 (31) ◽  
pp. 1750291 ◽  
Author(s):  
Yu-Qing Wang ◽  
Xing-Jian Chu ◽  
Chao-Fan Zhou ◽  
Bin Jia ◽  
Sen Lin ◽  
...  

In this paper, a modified macroscopic traffic flow model is presented. The term of the density-dependent relaxation time is introduced here. The relation between the relaxation time and the density in traffic flow is presented quantitatively. Besides, a factor R depicting varied properties of traffic flow in different traffic states is also introduced in the formulation of the model. Furthermore, the evolvement law of traffic flow with distinctly initial density distribution and boundary perturbations is emphasized.


Sign in / Sign up

Export Citation Format

Share Document