Continuous power loss measurement with and against the rolling direction of electrical steel strip using nonenwrapping magnetisers

Author(s):  
P. Beckley
Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 957
Author(s):  
Héctor Ortiz Rangel ◽  
Armando Salinas Rodríguez ◽  
Omar García Rincón

The microstructure of a low Si, ultra-low-C, hot-rolled electrical steel strip is modified by annealing at T < To, the α→γ transformation temperature. This heat treatment causes the abnormal anisotropic growth of surface grains which consumes the original hot-rolled microstructure. The growth of the surface grains first takes place parallel to the rolling direction and then in a columnar form parallel to the normal direction until grains growing in opposite directions from the surfaces impinge at the center of the strip. It is shown that cold rolling and a short annealing treatment at temperatures between 700 and 800 °C leads to microstructures which result in iron energy losses that can be as much as 30% lower than those observed in the same material not subjected to the annealing prior to cold rolling. The magnitude of the reduction in energy losses depends on strip thickness and processing parameters. The major effect is observed in material annealed at 710 °C and the relative effect (with respect to material that is not annealed prior to cold rolling) decreases as the strip thickness decreases. It is shown that these effects can be attributed to the effect of the processing conditions on texture and grain size. The maximum reduction in energy losses is observed when the final microstructure consists of ferrite grains ~1.5 times larger than those obtained if the material is not annealed prior to cold rolling.


Author(s):  
Lenin Kanagasabai

In this paper Billfish Optimization Algorithm (BOA) and Red Mullet Optimization (RMO) Algorithm has been designed for voltage stability enhancement and power loss reduction. Electrical Power is one among vital need in the society and also it plays lead role in formation of smart cities. Continuous power supply is essential and mainly quality of the power should be maintained in good mode. In this work real power loss reduction is key objective. Natural hunting actions of Billfish over pilchards are utilized to model the algorithm. Candidate solutions in the projected algorithm are Billfish and population in the exploration space is arbitrarily engendered. Movement of Billfish is high, it will attack the pilchards vigorously and it can’t escape from the attack done by the group of Billfish. Then in this paper Red Mullet Optimization (RMO) Algorithm is proposed to solve optimal reactive power problem. Projected RMO algorithm modeled based on the behavior and characteristics of red mullet. As a group they hunt for the prey and in each group there will be chaser and blocker. When the prey approaches any one of the blocker red mullet then automatically it will turn as new chaser. So roles will interchangeable and very much flexible. At any time chaser will become blocker and any of the blocker will become a chaser with respect to prey position and conditions. Then in that particular area when all the preys are hunted completed then red mullet group will change the area. So there will be flexibility and changing the role quickly with respect to prey position. Alike to that with reference to the fitness function the particle will be chosen as chaser. By means of considering L (voltage stability) - index BOA, and RMO algorithms verified in IEEE 30- bus system. Then without L-index BOA and RMO algorithms is appraised in 30 bus test systems. Both BOA and RMO algorithms condensed the power loss proficiently with improvement in voltage stability and minimization of voltage deviation.


2020 ◽  
Vol 504 ◽  
pp. 166632
Author(s):  
M.B.S. Dias ◽  
D.P.M. Bentancour ◽  
F.G.P. Araújo ◽  
A.D. Santos ◽  
F.J.G. Landgraf

Sign in / Sign up

Export Citation Format

Share Document