Acoustic monitoring of partial discharges in gas insulated substations using optical sensors

1993 ◽  
Vol 140 (5) ◽  
pp. 369 ◽  
Author(s):  
J.A. Cosgrave ◽  
A. Vourdas ◽  
G.R. Jones ◽  
J.W. Spencer ◽  
M.M. Murphy ◽  
...  
Author(s):  
A. V. Golenischev-Kutuzov ◽  
D. A. Ivanov ◽  
A. A. Potapov ◽  
V. I. Krotov

In the electric power industry of Russia and abroad, special attention is paid to the problem of an increase in the number of accidents caused by damage to high-voltage insulators in high-voltage equipment. An analysis of emergencies at substations and open switchgears [1- 2, 4] was carried out, which showed that in most cases the causes of damage to high-voltage insulators are natural aging in an applied electric field, overvoltage, and the presence of initial defects in the manufacture of high-voltage insulators. Based on this fact, we developed various methods of non-contact diagnostics of high-voltage insulators in order to identify defects at an early stage of their development. Particular attention was paid to the method of partial discharges because the characteristics of partial discharges provide information on the parameters of defects. The article describes a set of non-contact methods for remote diagnostics of high-voltage insulators; a two-channel method for remote diagnostics of the operating state of high-voltage insulators, based on the registration of partial discharges by electromagnetic and acoustic sensors; a device that allows visual inspection and the search for faulty high-voltage equipment; remote non-contact method for recording electric fields of high tension of industrial frequency, as well as their spatial orientation based on the electro-optical effect. We developed a mock-up of a portable diagnostic device for implementing research methods for high-voltage dielectric elements to diagnose their technical condition using the described complex of non-contact methods. The measuring device as part of a portable diagnostic device consists of a set of sensors for collecting diagnostic information detected by electromagnetic, acoustic and electro-optical sensors and a voltage phase signal applied to the studied highvoltage insulator. The simultaneous use of several sensors at once made it possible to increase the accuracy of localization of partial discharges in high-voltage insulators. Visualization of diagnostic results is possible at the control room in the form of amplitude-phase, frequencyphase and amplitude-frequency diagrams of the distribution of characteristics of partial discharges and on a portable device in the form of radiation intensity from the selected sensor. A portable diagnostic device made it possible in laboratory conditions to study electrophysical processes in various dielectric materials and products under the influence of strong alternating electric fields. A study was made of the features of defects on the rod and the terminal-terminal contact, a diagram of the electrophysical processes accompanying the emission of partial discharges was constructed, and the causes of their occurrence were established.


VASA ◽  
2015 ◽  
Vol 44 (5) ◽  
pp. 355-362 ◽  
Author(s):  
Marie Urban ◽  
Alban Fouasson-Chailloux ◽  
Isabelle Signolet ◽  
Christophe Colas Ribas ◽  
Mathieu Feuilloy ◽  
...  

Abstract. Summary: Background: We aimed at estimating the agreement between the Medicap® (photo-optical) and Radiometer® (electro-chemical) sensors during exercise transcutaneous oxygen pressure (tcpO2) tests. Our hypothesis was that although absolute starting values (tcpO2rest: mean over 2 minutes) might be different, tcpO2-changes over time and the minimal value of the decrease from rest of oxygen pressure (DROPmin) results at exercise shall be concordant between the two systems. Patients and methods: Forty seven patients with arterial claudication (65 + / - 7 years) performed a treadmill test with 5 probes each of the electro-chemical and photo-optical devices simultaneously, one of each system on the chest, on each buttock and on each calf. Results: Seventeen Medicap® probes disconnected during the tests. tcpO2rest and DROPmin values were higher with Medicap® than with Radiometer®, by 13.7 + / - 17.1 mm Hg and 3.4 + / - 11.7 mm Hg, respectively. Despite the differences in absolute starting values, changes over time were similar between the two systems. The concordance between the two systems was approximately 70 % for classification of test results from DROPmin. Conclusions: Photo-optical sensors are promising alternatives to electro-chemical sensors for exercise oximetry, provided that miniaturisation and weight reduction of the new sensors are possible.


1995 ◽  
Vol 142 (1) ◽  
pp. 1-3 ◽  
Author(s):  
J.C. Fothergill ◽  
F.H.. Kreuger ◽  
A. Kelen ◽  
G.C. Stevens
Keyword(s):  

2020 ◽  
pp. 38-44
Author(s):  
A. V. Polyakov ◽  
M. A. Ksenofontov

Optical technologies for measuring electrical quantities attract great attention due to their unique properties and significant advantages over other technologies used in high-voltage electric power industry: the use of optical fibers ensures high stability of measuring equipment to electromagnetic interference and galvanic isolation of high-voltage sensors; external electromagnetic fields do not influence the data transmitted from optical sensors via fiber-optic communication lines; problems associated with ground loops are eliminated, there are no side electromagnetic radiation and crosstalk between the channels. The structure and operation principle of a quasi-distributed fiber-optic high-voltage monitoring system is presented. The sensitive element is a combination of a piezo-ceramic tube with an optical fiber wound around it. The device uses reverse transverse piezoelectric effect. The measurement principle is based on recording the change in the recirculation frequency under the applied voltage influence. When the measuring sections are arranged in ascending order of the measured effective voltages relative to the receiving-transmitting unit, a relative resolution of 0,3–0,45 % is achieved for the PZT-5H and 0,8–1,2 % for the PZT-4 in the voltage range 20–150 kV.


2015 ◽  
Author(s):  
Guillermo Robles ◽  
José Manuel Fresno ◽  
Matilde Sánchez-Fernández ◽  
Juan Manuel Martínez-Tarifa

Sign in / Sign up

Export Citation Format

Share Document