Adaptive tracking controller design for robotic systems using Gaussian wavelet networks

2002 ◽  
Vol 149 (4) ◽  
pp. 316-322 ◽  
Author(s):  
C.-K. Lin
2016 ◽  
Vol 21 (2) ◽  
pp. 166-184 ◽  
Author(s):  
Zhongcai Zhang ◽  
Yuqiang Wu

This paper is devoted to the problem of modeling and trajectory tracking for stochastic nonholonomic dynamic systems in the presence of unknown parameters. Prior to tracking controller design, the rigorous derivation of stochastic nonholonomic dynamic model is given. By reasonably introducing so-called internal state vector, a reduced dynamic model, which is suitable for control design, is proposed. Based on the backstepping technique in vector form, an adaptive tracking controller is then derived, guaranteeing that the mean square of the tracking error converges to an arbitrarily small neighborhood of zero by tuning design parameters. The efficiency of the controller is demonstrated by a mechanics system: a vertical mobile wheel in random vibration environment.


2020 ◽  
Vol 153 ◽  
pp. 103980
Author(s):  
Huimin Ouyang ◽  
Zheng Tian ◽  
Lili Yu ◽  
Guangming Zhang

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 40706-40715
Author(s):  
Mohammad Reza Satouri ◽  
Abolhassan Razminia ◽  
Saleh Mobayen ◽  
Pawel Skruch

Sign in / Sign up

Export Citation Format

Share Document