Performance analysis and improved detection for DMSK with nonredundant error correction

1990 ◽  
Vol 137 (6) ◽  
pp. 431
Author(s):  
H. Weining
2002 ◽  
Author(s):  
Juanjuan Yan ◽  
Yi Dong ◽  
Minghua Chen ◽  
Shizhong Xie ◽  
BingKun Zhou

2021 ◽  
Author(s):  
Tirthadip Sinha ◽  
Jaydeb Bhaumik

Abstract One important innovation in information and coding theory is polar code, which delivers capacity attaining error correction performance varying code rates and block lengths. In recent times, polar codes are preferred to offer channel coding in the physical control channels of the 5G (5 th Generation) wireless standard by 3GPP (Third Generation Partnership Project) New Radio (NR) group. Being a part of the physical layer, Channel coding plays key role in deciding latency and reliability of a communication system. However, the error correction performance degrades with decreased message lengths. 5G NR requires channel codes with low rates, very low error floors with short message lengths and low latency in coding process. In this work, Distributed Cyclic Redundancy Check Aided polar (DCA-polar) code along with Cyclic Redundancy Check Aided polar (CA-polar) code, the two variant of polar codes have been proposed which provide significant error-correction performance in the regime of short block lengths and enable early termination of decoding processes. While CRC bits improve the performance of SCL (successive cancellation list) decoding by increasing distance properties, distributed CRC bits permit path trimming and early-termination of the decoding process. The design can reduce the decoding latency and energy consumption of hardware, which is crucial for mobile applications like 5G. The work also considers the performance analysis of NR polar codes over AWGN (Additive White Gaussian Noise) for short information block lengths at low code rates in the uplink and downlink control channels using SNR (Signal to Noise Ratio) and FAR (False Alarm Rate) as the performance measures. Simulation results illustrate different trade-offs between error-correction and detection performances comparing proposed NR polar coding schemes.


Sign in / Sign up

Export Citation Format

Share Document